Thermosetting polymers are used in a wide range of applications due to their robust mechanical strength and superior flame retardancy. Despite these technical benefits, recycling of thermosetting polymers has been challenging because of their crosslinking nature. Moreover, their disposal through conventional methods (landfill and combustion) poses environmental concerns, such as microplastics and air pollutants.
View Article and Find Full Text PDFCrop residues are affordable lignocellulosic waste in the world, and a large portion of the waste has been burned, releasing toxic pollutants into the environment. Since the crop residue is a carbon and ingredient rich material, it can be strategically used as a sorptive material for (in)organic pollutants in the wastewater after thermo-chemical valorization (i.e.
View Article and Find Full Text PDFCrop residues are representative agricultural waste materials, massively generated in the world. However, a large fraction of them is currently being wasted, though they have a high potential to be used as a value-added carbon-rich material. Also, the applications of carbon-rich materials from agricultural waste to industries can have economic benefit because waste-derived carbon materials are considered inexpensive waste materials.
View Article and Find Full Text PDFAs the global consumption of cigarettes has increased, the massive generation of cigarette butts (CBs) has led to critical environmental and health problems. Landfilling or incineration of CBs has been conventionally carried out, but such disposal protocols have suffered from the potential risks of the unwanted/uncontrolled release of leachates, carcinogens, and toxic chemicals into all environmental media. Thus, this study focuses on developing an environmentally dependable method for CB disposal.
View Article and Find Full Text PDFConventional disposal processes (incineration and landfilling) of agricultural plastic wastes release harmful chemicals and microplastics into our ecosystems. To provide a disposal platform not releasing harmful chemicals, pyrolysis of a representative agricultural plastic waste was proposed in this study. Spent plastic mulching film (SMF) was used as a model waste compound.
View Article and Find Full Text PDFCellulose acetate (CA) is one of widely used polymers for chemical and medical applications due to its versatile physico-chemical functionalities. Although its recycle is available after a deacetylation process, the recycle process releases a huge amount of wastewater. Thus, this study investigated a direct disposal process of CA with its valorization to syngas (H and CO) through pyrolysis.
View Article and Find Full Text PDFTo develop the environmentally benign thermo-chemical process, this study placed great emphasis on the influence of CO on pyrolysis of cattle excreta for energy recovery. To this end, this study evaluates the possible enhanced energy recovery from cattle excreta using CO as reaction medium/feedstock in the thermal degradation of cattle excreta. The enhanced generation of CO in the presence of CO reached up to 15.
View Article and Find Full Text PDFThis report proposes a new approach to evaluate the odour nuisance of cattle manure samples from three different cattle breeds (i.e., native cattle, beef cattle, and milk cow) by means of quantification and speciation of volatile fatty acids (VFAs).
View Article and Find Full Text PDFThis work mechanistically investigated the influence of CO2 in the thermo-chemical process of microalgal biomass (Chlorella vulgaris and Microcystis aeruginosa) to achieve a fast virtuous cycle of carbon via recovering energy. This work experimentally justified that the influence of CO2 in pyrolysis of microalgal biomass could be initiated at temperatures higher than 530 °C, which directly led to the enhanced generation of syngas. For example, the concentration of CO from pyrolysis of M.
View Article and Find Full Text PDFThis work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs.
View Article and Find Full Text PDFThis study investigated the utilization of CO2 as carbon neutral chemical feedstock in the thermo-chemical processing (i.e., pyrolysis and gasification) of biomass to enhance sustainability via modification of the composition of end products.
View Article and Find Full Text PDF