Publications by authors named "Seong Kyung Lee"

It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer's disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-β (Aβ) peptides in the brain is considered to be the major pathology of AD, inhibition of Aβ aggregation could be an effective strategy for AD treatment.

View Article and Find Full Text PDF

One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro.

View Article and Find Full Text PDF

Aberrant activation of the Wnt pathway contributes to human cancer progression. Antagonists that interfere with Wnt ligand/receptor interactions can be useful in cancer treatments. In this study, we evaluated the therapeutic potential of a soluble Wnt receptor decoy in cancer gene therapy.

View Article and Find Full Text PDF