Quantum computers now encounter the significant challenge of scalability, similar to the issue that classical computing faced previously. Recent results in high-fidelity spin qubits manufactured with a Si CMOS technology, along with demonstrations that cryogenic CMOS-based control/readout electronics can be integrated into the same chip or die, opens up an opportunity to break out the challenges of qubit size, I/O, and integrability. However, the power consumption of cryogenic CMOS-based control/readout electronics cannot support thousands or millions of qubits.
View Article and Find Full Text PDFThis paper demonstrates the novel approach of sub-micron-thick InGaAs broadband photodetectors (PDs) designed for high-resolution imaging from the visible to short-wavelength infrared (SWIR) spectrum. Conventional approaches encounter challenges such as low resolution and crosstalk issues caused by a thick absorption layer (AL). Therefore, we propose a guided-mode resonance (GMR) structure to enhance the quantum efficiency (QE) of the InGaAs PDs in the SWIR region with only sub-micron-thick AL.
View Article and Find Full Text PDFChildhood and adolescence are crucial periods for developing one's awareness of sexuality. Comprehensive Sexuality Education (CSE) during these stages is essential for overall growth, fostering healthy self-concepts, and addressing diverse sexual issues among children and adolescents globally. A meta-analysis was conducted to analyze the effectiveness of CSE programs.
View Article and Find Full Text PDFBackground: This systematic literature review explored the general characteristics, validation, and reliability of pediatric simulation-based education (P-SBE).
Methods: A literature search was conducted between May 23 and 28 using the PRISMA guidelines, which covered databases such as MEDLINE, EMBASE, CINAHL, and Cochrane Library. In the third selection process, the original texts of 142 studies were selected, and 98 documents were included in the final content analysis.
Nurse turnover is a critical issue in Korea, as it affects the quality of patient care and increases the financial burden on healthcare systems. To address this problem, this study aimed to develop and evaluate a machine learning-based prediction model for nurse turnover in Korea and analyze factors influencing nurse turnover. The study was conducted in two phases: building the prediction model and evaluating its performance.
View Article and Find Full Text PDFPurpose: The aim of this study was to identify factors influencing the learning transfer of nursing students in a non-face-to-face educational environment through structural equation modeling and suggest ways to improve the transfer of learning.
Methods: In this cross-sectional study, data were collected via online surveys from February 9 to March 1, 2022, from 218 nursing students in Korea. Learning transfer, learning immersion, learning satisfaction, learning efficacy, self-directed learning ability and information technology utilization ability were analyzed using IBM SPSS for Windows ver.
The coming of the big-data era brought a need for power-efficient computing that cannot be realized in the Von Neumann architecture. Neuromorphic computing which is motivated by the human brain can greatly reduce power consumption through matrix multiplication, and a device that mimics a human synapse plays an important role. However, many synaptic devices suffer from limited linearity and symmetry without using incremental step pulse programming (ISPP).
View Article and Find Full Text PDFHfO-based ferroelectric (FE) materials have emerged as a promising material for non-volatile memory applications because of remanent polarization, scalability of thickness below 10 nm, and compatibility with complementary metal-oxide-semiconductor technology. However, in the metal/FE/insulator/semiconductor, it is difficult to improve switching voltage ( ), endurance, and retention properties due to the interfacial layer (IL), which inevitably grows during the fabrication. Here, we proposed and demonstrated oxygen scavenging to reduce the IL thickness in an HfZrO -based capacitor and the thinner IL was confirmed by cross-sectional transmission electron microscopy.
View Article and Find Full Text PDFNext-generation wireless communication such as sixth-generation (6G) and beyond is expected to require high-frequency, multifunctionality, and power-efficiency systems. A III-V compound semiconductor is a promising technology for high-frequency applications, and a Si complementary metal-oxide-semiconductor (CMOS) is the never-beaten technology for highly integrated digital circuits. To harness the advantages of these two technologies, monolithic integration of III-V and Si electronics is beneficial, so that there have been everlasting efforts to accomplish the monolithic integration.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
Improving nursing students' subjective happiness is germane for efficiency in the nursing profession. This study examined the subjective happiness of nursing students by applying social network analysis (SNA) and developing a strategy to improve the subjective happiness of nursing. The study adopted a cross sectional survey to measure subjective happiness and social network of 222 nursing students.
View Article and Find Full Text PDFRealizing a neuromorphic-based artificial visual system with low-cost hardware requires a neuromorphic device that can react to light stimuli. This study introduces a photoresponsive neuron device composed of a single transistor, developed by engineering an artificial neuron that responds to light, just like retinal neurons. Neuron firing is activated primarily by electrical stimuli such as current via a well-known single transistor latch phenomenon.
View Article and Find Full Text PDFWe report an experimental characterization of the interface states (()) by using the subthreshold drain current with optical charge pumping effect in InGaAs metal-oxide-semiconductor fieldeffect transistors (MOSFETs). The interface states are derived from the difference between the dark and photo states of the current-voltage characteristics. We used a sub-bandgap photon (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Although they have attracted enormous attention in recent years, software-based and two-dimensional hardware-based artificial neural networks (ANNs) may consume a great deal of power. Because there will be numerous data transmissions through a long interconnection for learning, power consumption in the interconnect will be an inevitable problem for low-power computing. Therefore, we suggest and report 3D stackable synaptic transistors for 3D ANNs, which would be the strongest candidate in future computing systems by minimizing power consumption in the interconnection.
View Article and Find Full Text PDFIn this study, multicolor photodetectors (PDs) fabricated by using bulk p-i-n-based visible GaAs and near-infrared InGaAs structures were monolithically integrated through a high-throughput epitaxial lift-off (ELO) process. To perform multicolor detection in integrated structures, GaAs PDs were transferred onto InGaAs PDs by using a YO bonding layer to simultaneously detect visible and near-infrared photons and minimize the optical loss. As a result, it was found that the GaAs top PD and InGaAs bottom PD were vertically aligned without tilting in x-ray diffraction (XRD) measurement.
View Article and Find Full Text PDFIn this study, we proposed a strategy to fabricate vertically stacked subpixel (VSS) micro-light-emitting diodes (μ-LEDs) for future ultrahigh-resolution microdisplays. At first, to vertically stack the LED with different colors, we successfully adopted a bonding-interface-engineered monolithic integration method using SiO2/SiNx distributed Bragg reflectors (DBRs). It was found that an intermediate DBR structure could be used as the bonding layer and color filter, which could reflect and transmit desired wavelengths through the bonding interface.
View Article and Find Full Text PDF