Alzheimer's disease (AD) is a progressive neurological disorder and the leading cause of dementia. Despite significant efforts, treatment strategies targeting amyloid-β have been less successful than anticipated. Recently, the role of neuroinflammation and adaptive immune response in AD pathogenesis has gained attention.
View Article and Find Full Text PDFOne of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfO) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfO create defect states below the Fermi level, providing a pathway for hole injection.
View Article and Find Full Text PDFAn autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia.
View Article and Find Full Text PDFPatients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively.
View Article and Find Full Text PDFWe introduce an enhanced performance organic-inorganic hybrid p-n junction photodiode, utilizing poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) and ZnO, fabricated through a solution-based process at a low temperature under 100 °C. Improved interfacial electronic structure, characterized by shallower Gaussian standard deviation of the density-of-state distribution and a larger interface dipole, has resulted in a remarkable fold increase of ∼10 in signal-to-noise ratio for the device. This photodiode exhibits a high specific detectivity (2.
View Article and Find Full Text PDFVisible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers.
View Article and Find Full Text PDFBackground: Studies on the interaction between tumour-infiltrating immune cells (TIICs) and tumour cells in melanoma arising from congenital melanocytic nevus (CMN) are lacking.
Objective: The aim of this study was to determine the intratumoral immune landscape of TIICs and tumour cells during invasion and metastasis.
Methods: Tissue specimens were obtained from patients with melanoma originating from CMN.
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output.
View Article and Find Full Text PDFBackground: Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored.
Methods: We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls.
Korean J Physiol Pharmacol
January 2024
Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca signaling is critical for controlling neural activity.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2024
Background: Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes.
View Article and Find Full Text PDFAtomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an essential material for the encapsulation layer in van der Waals heterostructures and efficient deep ultraviolet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to intrinsic vacancies and extrinsic impurities within the 2D crystal lattice, which result in distinct optical properties in the ultraviolet (UV) to near-infrared (IR) range.
View Article and Find Full Text PDFIntrinsically stretchable light-emitting materials are crucial for skin-like wearable displays; however, their color range has been limited to green-like yellow lights owing to the restricted stretchable light-emitting materials (super yellow series materials). To develop skin-like full-color displays, three intrinsically stretchable primary light-emitting materials [red, green, and blue (RGB)] are essential. In this study, we report three highly stretchable primary light-emitting films made from a polymer blend of conventional RGB light-emitting polymers and a nonpolar elastomer.
View Article and Find Full Text PDFWe present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is known for its disadvantages of being brittle, fragile, and expensive. Furthermore, due to the high hole injection barrier of quantum dots, the need for electrodes with a higher work function is becoming more significant.
View Article and Find Full Text PDFMesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system.
View Article and Find Full Text PDFLow-temperature processing is important for improving the stability and performance of flexible quantum dot light-emitting diodes (QLEDs). In this study, QLEDs were fabricated using poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) as a suitable hole transport layer (HTL) material owing to its low-temperature processability and vanadium oxide as the low-temperature solution-processable hole injection layer material. The maximum luminance and highest current efficiency of the QLEDs on a glass substrate with an optimal PTAA HTL was 8.
View Article and Find Full Text PDFCharge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degradation. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer owing to lower hole conductivity compared to electron conductivity. Herein, CuCoO has a relatively higher hole conductivity than other binary oxides and can induce an improved charge balance.
View Article and Find Full Text PDFOne of the major obstacles in the way of high-performance quantum dot light-emitting diodes (QLEDs) is the charge imbalance arising from more efficient electron injection into the emission layer than the hole injection. In previous studies, a balanced charge injection was often achieved by lowering the electron injection efficiency; however, high performance next-generation QLEDs require the hole injection efficiency to be enhanced to the level of electron injection efficiency. Here, we introduce a solution-processed HfO layer for the enhanced hole injection efficiency.
View Article and Find Full Text PDFThe C-terminal fragment of CABIN1 interacts with calcineurin and represses the transcriptional activity of the nuclear factor of activated T cells (NFAT). However, the specific sequences and mechanisms through which it binds to calcineurin are unclear. This study determined that decameric peptide (CABIN1 residues 2146-2155) is minimally required for binding to calcineurin.
View Article and Find Full Text PDFVisible-light phototransistors have been fabricated based on the heterojunction of zinc oxide (ZnO) and titanium oxide (TiO). A thin layer of TiO was deposited onto the spin-coated ZnO film atomic layer deposition (ALD). The electrical characteristics of the TiO layer were optimized by controlling the purge time of titanium isopropoxide (TTIP).
View Article and Find Full Text PDFWe carried out KF postdeposition treatment (PDT) on a Cu(In,Ga)Se (CIGS) layer with a process time varying from 50 to 200 s. The highest CIGS solar-cell efficiency was achieved at a KF PDT process time of 50 s; in this condition, we observed the highest level of K element at the near-surface of the CIGS layer and the perfectly passivated pinholes on the CIGS surface. At process times above 150 s, the oversupplied KF agglomerated into large islands and was subsequently eliminated during the deposition of the chemical bath deposition (CBD)-Zn(O,S) buffer layer owing to the islands' water-soluble characteristics.
View Article and Find Full Text PDF