We introduce an enhanced performance organic-inorganic hybrid p-n junction photodiode, utilizing poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) and ZnO, fabricated through a solution-based process at a low temperature under 100 °C. Improved interfacial electronic structure, characterized by shallower Gaussian standard deviation of the density-of-state distribution and a larger interface dipole, has resulted in a remarkable fold increase of ∼10 in signal-to-noise ratio for the device. This photodiode exhibits a high specific detectivity (2.
View Article and Find Full Text PDFMany different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis.
View Article and Find Full Text PDFVisible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers.
View Article and Find Full Text PDFCombining standard surgical procedures with personalized chemotherapy and the continuous monitoring of cancer progression is necessary for effective NSCLC treatment. In this study, we developed liposomal nanoparticles as theranostic agents capable of simultaneous therapy for and imaging of target cancer cells. Copper-64 (Cu), with a clinically practical half-life ( = 12.
View Article and Find Full Text PDFWe present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is known for its disadvantages of being brittle, fragile, and expensive. Furthermore, due to the high hole injection barrier of quantum dots, the need for electrodes with a higher work function is becoming more significant.
View Article and Find Full Text PDFDue to the relatively long sequence, tracrRNAs are chemically less synthesizable than crRNAs, leading to limited scalability of RNA guides for CRISPR-Cas9 systems. To develop shortened versions of RNA guides with improved cost-effectiveness, we have developed a split-tracrRNA system by nicking the 67-mer tracrRNA (tracrRNA(67)). Cellular gene editing assays and DNA cleavage assays revealed that the position of the nick is critical for maintaining the activity of tracrRNA(67).
View Article and Find Full Text PDFLow-temperature processing is important for improving the stability and performance of flexible quantum dot light-emitting diodes (QLEDs). In this study, QLEDs were fabricated using poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) as a suitable hole transport layer (HTL) material owing to its low-temperature processability and vanadium oxide as the low-temperature solution-processable hole injection layer material. The maximum luminance and highest current efficiency of the QLEDs on a glass substrate with an optimal PTAA HTL was 8.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) cells do not contain various receptors for targeted treatment, a reason behind the poor prognosis of this disease. In this study, biocompatible theranostic erythrocyte-derived nanoparticles (EDNs) were developed and evaluated for effective early diagnosis and treatment of TNBC. The anti-cancer drug, doxorubicin (DOX), was encapsulated into the EDNs and diagnostic quantum dots (QDs) were incorporated into the lipid bilayers of EDNs for tumor bio-imaging.
View Article and Find Full Text PDFOne of the major obstacles in the way of high-performance quantum dot light-emitting diodes (QLEDs) is the charge imbalance arising from more efficient electron injection into the emission layer than the hole injection. In previous studies, a balanced charge injection was often achieved by lowering the electron injection efficiency; however, high performance next-generation QLEDs require the hole injection efficiency to be enhanced to the level of electron injection efficiency. Here, we introduce a solution-processed HfO layer for the enhanced hole injection efficiency.
View Article and Find Full Text PDFIntroduction: Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle.
Methods: The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47.
Purpose: Paclitaxel (PTX) is one of the most potent and commonly used chemotherapies for breast and pancreatic cancer. Several ongoing clinical trials are investigating means of enhancing delivery of PTX across the blood-brain barrier for glioblastomas. Despite the widespread use of PTX for breast cancer, and the initiative to repurpose this drug for gliomas, there are no predictive biomarkers to inform which patients will likely benefit from this therapy.
View Article and Find Full Text PDFOnly a subset of recurrent glioblastoma (rGBM) responds to anti-PD-1 immunotherapy. Previously, we reported enrichment of BRAF/PTPN11 mutations in 30% of rGBM that responded to PD-1 blockade. Given that BRAF and PTPN11 promote MAPK/ERK signaling, we investigated whether activation of this pathway is associated with response to PD-1 inhibitors in rGBM, including patients that do not harbor BRAF/PTPN11 mutations.
View Article and Find Full Text PDFPurpose: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors.
View Article and Find Full Text PDFOrgan-specific cell-penetrating peptides (CPPs) are a class of molecules that can be highly effective at delivering therapeutic cargoes, and they are currently of great interest in cancer treatment strategies. Herein, we describe a new CPP (amino acid sequence serine-isoleucine-tyrosine-valine, or SIWV) that homes to glioblastoma multiforme (GBM) brain tumor tissues with remarkable specificity in vitro and in vivo. The SIWV sequence was identified from an isoform of annexin-A3 (AA3H), a membrane-interacting human protein.
View Article and Find Full Text PDFPulmonary fibrosis is a serious respiratory disease, with limited therapeutic options. Since TGF-β is a critical factor in the fibrotic process, downregulation of this cytokine has been considered a potential approach for disease treatment. Herein, we designed a new lung-targeted delivery technology based on the complexation of polymeric antisense oligonucleotides (pASO) and dimeric human β-defensin 23 (DhBD23).
View Article and Find Full Text PDFThe potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples.
View Article and Find Full Text PDFWe demonstrated that 19 out of 20 RNA residues in the guide region of crRNA can be replaced with DNA residues with high GC-contents. The cellular activity of the chimeric crRNAs to disrupt the target gene was comparable to that of the native crRNA.
View Article and Find Full Text PDFMany aptamers have been evaluated for their ability as drug delivery vehicles to target ligands, and a variety of small interfering RNAs (siRNAs) have been tested for their anti-cancer properties. However, since these two types of molecules have similar physicochemical properties, it has so far been difficult to formulate siRNA-encapsulating carriers guided by aptamers. Here, we propose aptamer-coupled lipid nanocarriers encapsulating quantum dots (QDs) and siRNAs for theragnosis of triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFEnormous efforts have been made to harness nanoparticles showing extravasation around tumors for tumor-targeted drug carriers. Owing to the complexity of in vivo environments, however, it is very difficult to rationally design a nanoconstruct showing high tumor specificity. Here, we show an approach to develop tumor-specific drug carriers by screening a library of self-assembled nucleic acid cages in vivo.
View Article and Find Full Text PDFCancer theranosis is an emerging field of personalized medicine which enables individual anti-cancer treatment by monitoring the therapeutic responses of cancer patients. Based on a consideration of the nano-bio interactions related to the blood circulation of systemically administered nanoparticles in humans, as well as extravasation and active targeting, lipid micellar nanoparticles were co-loaded with paclitaxel (PTX) and quantum dots (QDs) to generate a theranostic delivery vehicle. To provide with a tumor-targeting capability, either an antibody or an aptamer against the epidermal growth factor receptor (EGFR) was conjugated to the micelle surface.
View Article and Find Full Text PDFInt J Nanomedicine
October 2018
Background: Efficient target-specific siRNA delivery has always been a primary concern in the field of siRNA clinical application.
Purpose: In this study, four different types of anti-epidermal growth factor receptor (EGFR) antibody-conjugated immunonanoparticles were prepared and tested for cancer cell-targeted therapeutic siRNA delivery.
Materials And Methods: The prepared nanoparticles encapsulating siRNAs were character-ized by gel retardation and particle analysis using a Zetasizer.