Recent studies of automatic diagnosis of vertebral compression fractures (VCFs) using deep learning mainly focus on segmentation and vertebral level detection in lumbar spine lateral radiographs (LSLRs). Herein, we developed a model for simultaneous VCF diagnosis and vertebral level detection without using adjacent vertebral bodies. In total, 1102 patients with VCF, 1171 controls were enrolled.
View Article and Find Full Text PDFObjective: Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs.
Materials And Methods: Our model was trained and validated in a two-step manner.