Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism.
View Article and Find Full Text PDFBackground: Synthetic biological circuits are widely utilized to control microbial cell functions. Natural and synthetic riboswitches are attractive sensor modules for use in synthetic biology applications. However, tuning the fold-change of riboswitch circuits is challenging because a deep understanding of the riboswitch mechanism and screening of mutant libraries is generally required.
View Article and Find Full Text PDFFEMS Microbiol Lett
September 2018
Microbial conversion of biomass into value-added biochemicals is a highly sustainable process compared to petroleum-based production. In this regard, microorganisms have been engineered via simple overexpression or deletion of metabolic genes to facilitate the production. However, the producer microorganisms require complex regulatory circuits to maximize productivity and performance.
View Article and Find Full Text PDFThe aim of this study is to demonstrate that rebalancing of metabolic fluxes at acetyl-CoA branch node can substantially improve the titer and productivity of hexanoic acid in recombinant Escherichia coli strains. First, a hexanoic acid-producing E. coli strain was constructed by expressing genes encoding β-ketothiolase (BktB) from Cupriavidus necator and acetyl-CoA transferase (ACT) from Megasphaera sp.
View Article and Find Full Text PDFEconomic production of chemicals from microbes necessitates development of high-producing strains and an efficient screening technology is crucial to maximize the effect of the most popular strain improvement method, the combinatorial approach. However, high-throughput screening has been limited for assessment of diverse intracellular metabolites at the single-cell level. Herein, we established a screening platform that couples a microfluidic static droplet array (SDA) and an artificial riboswitch to analyse intracellular metabolite concentration from single microbial cells.
View Article and Find Full Text PDF