Publications by authors named "Seong D Kong"

Superparamagnetic nanoparticles with a high initial magnetic susceptibility χ are of great interest in a wide variety of chemical, biomedical, electronic, and subsurface energy applications. In order to achieve the theoretically predicted increase in χ with the cube of the magnetic diameter, new synthetic techniques are needed to control the crystal structure, particularly for magnetite nanoparticles larger than 10 nm. Aqueous magnetite dispersions (FeO) with a χ of 3.

View Article and Find Full Text PDF

Aqueous dispersions of iron oxide nanoparticles with a high initial magnetic susceptibility (χi) are of interest as contrast agents in electromagnetic tomography. Nanoclusters composed of iron oxide primary particles were formed by co-precipitation of Fe(II) and Fe(III) chlorides at alkaline conditions and high temperature of 95°C. Two-step addition of citrate was used to produce large primary particles and then stabilize the nanoclusters.

View Article and Find Full Text PDF

Unlabelled: Iron oxide nanoparticles (IONPs) are promising neuroimaging agents and molecular cargo across neurovascular barriers. Development of intrinsically safe IONP chemistries requires a robust in vivo nanoneurotoxicity screening model. Herein, we engineered four IONPs of different surface and core chemistries: DMSA-Fe2O3, DMSA-Fe3O4, PEG-Fe3O4 and PEG-Au-Fe3O4.

View Article and Find Full Text PDF

Highly ordered TiO2 nanotube arrays with large diameter of 680-750 nm have been prepared by high voltage anodization in an electrolyte containing ethylene glycol at room temperature. To effectively suppress dielectric breakdown due to high voltage, pre-anodized TiO2 film was formed prior to the main anodizing process. Vertically aligned, large sized TiO2 nanotubes with double-wall structure have been demonstrated by SEM in detail under various anodizing voltages up to 225 V.

View Article and Find Full Text PDF

Stimuli-responsive nanoparticles (SRNPs) offer the potential of enhancing the therapeutic efficacy and minimizing the side-effects of chemotherapeutics by controllably releasing the encapsulated drug at the target site. Currently controlled drug release through external activation remains a major challenge during the delivery of therapeutic agents. Here we report a lipid-polymer hybrid nanoparticle system containing magnetic beads for stimuli-responsive drug release using a remote radio frequency (RF) magnetic field.

View Article and Find Full Text PDF

Delivery of therapeutic or diagnostic agents across an intact blood-brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma.

View Article and Find Full Text PDF

Silicon is one of the most important materials for modern electronics, telecom, and photovoltaic (PV) solar cells. With the rapidly expanding use of Si in the global economy, it would be highly desirable to reduce the overall use of Si material, especially to make the PVs more affordable and widely used as a renewable energy source. Here we report the first successful direction-guided, nano/microshaping of silicon, the intended direction of which is dictated by an applied magnetic field.

View Article and Find Full Text PDF

Manipulation of cell patterns in three dimensions in a manner that mimics natural tissue organization and function is critical for cell biological studies and likely essential for successfully regenerating tissues--especially cells with high physiological demands, such as those of the heart, liver, lungs, and articular cartilage.(1, 2) In the present study, we report on the feasibility of arranging iron oxide-labeled cells in three-dimensional hydrogels using magnetic fields. By manipulating the strength, shape, and orientation of the magnetic field and using crosslinking gradients in hydrogels, multi-directional cell arrangements can be produced in vitro and even directly in situ.

View Article and Find Full Text PDF

Nanocapsules containing intentionally trapped magnetic nanoparticles and defined anticancer drugs have been prepared to provide a powerful magnetic vector under moderate gradient magnetic fields. These nanocapsules can penetrate into the interior of tumors and allow a controlled on-off switchable release of the drug cargo via remote RF field. This smart drug delivery system is compact as all the components can be self-contained in 80-150 nm capsules.

View Article and Find Full Text PDF

This paper presents a pH-sensitive bifunctional crosslinker that enables facile conjugation of small molecule therapeutics to macromolecular carriers for use in drug delivery systems. This N-ethoxybenzylimidazole (NEBI) bifunctional crosslinker was designed to exploit mildly acidic, subcellular environments to trigger the release of therapeutics upon internalization in cells. We demonstrate that an analog of doxorubicin (a representative example of an anticancer therapeutic) conjugated to human serum albumin (HSA, a representative example of a macromolecular carrier) via this NEBI crosslinker can internalize and localize into acidic lysosomes of ovarian cancer cells.

View Article and Find Full Text PDF

Loading or filling nanostructures with antibiotics can be one of the relevant approaches for obtaining a controlled drug release rate. Vertically aligned silicon nanowire (SiNW) arrays with 10-40 nm diameter wires having 1-3 microm in length obtained by the electroless etching (EE) technique are used in this study as novel nanostructures for mediating drug delivery. Here we report controlled antibiotic activity and sustained bioavailability from SiNW arrays and also show microstructural manipulations for a tunable release rate.

View Article and Find Full Text PDF

This paper describes the development of a new class of N-linked imidazoles as potential pH-sensitive, cleavable linkers for use in cancer drug delivery systems. Kinetic analysis of eight derivatives of N-ethoxybenzylimidazoles (NEBIs) showed that their rates of hydrolysis are accelerated in mild aqueous acidic solutions compared to in solutions at normal, physiological pH. Incorporation of electron donating or electron withdrawing substituents on the phenyl ring of the NEBI resulted in the ability to tune the rates of hydrolysis under mild acidic conditions with half-lives ranging from minutes to months.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbq9v14m18cp6l1b10u2ddrb9qhdl0k0k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once