The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface.
View Article and Find Full Text PDFA new type of organic dyad that can induce low-energy photosensitization has been developed; electron donor and electron acceptor units are boron dipyrromethene (BODIPY) and ortho-carborane (o-Cb), respectively. The new dyads consist of a V-shaped BODIPY-(o-Cb)-BODIPY molecular array in which two BODIPY units are substituted onto two adjacent carbon atoms of the central o-Cb. In the presence of the o-Cb unit, as an electron acceptor, significant fluorescence quenching was observed which indicated that photoinduced electron transfer (PET) had occurred from the end-on BODIPY units to the central o-Cb with PET efficiencies of 63-71%.
View Article and Find Full Text PDFA series of red phosphorescent iridium dendrimers of the type [Ir(btp)2(pic-PCn)] (Ir-Gn; n = 0, 1, 2, and 3) with two 2-(benzo[b]thiophen-2-yl)pyridines (btp) and 3-hydroxypicolinate (pic) as the cyclometalating and ancillary ligands were prepared in good yields. Dendritic generation was grown at the 3 position of the pic ligand with 4-(9H-carbazolyl)phenyl dendrons connected to 3,5-bis(methyleneoxy)benzyloxy branches (PCn; n = 0, 2, 4, and 8). The harvesting photons on the PCn dendrons followed by efficient energy transfer to the iridium center resulted in high red emissions at ∼600 nm by metal-to-ligand charge transfer.
View Article and Find Full Text PDF