Aims: The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee's functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.
View Article and Find Full Text PDFOsteophytes are routinely removed during total knee arthroplasty, yet the preoperative planning currently relies on preoperative computed tomography (CT) scans of the patient's osteoarthritic knee, typically including osteophytic features. This complicates the surgeon's ability to anticipate the exact biomechanical effects of osteophytes and the consequences of their removal before the operation. The aim of this study was to investigate the effect of osteophytes on ligament strains and kinematics, and ascertain whether the osteophyte volume and location determine the extent of this effect.
View Article and Find Full Text PDFRobotic-assisted total knee arthroplasty can attain highly accurate implantation. However, the target for optimal positioning of the components remains debatable. One of the proposed targets is to recreate the functional status of the pre-diseased knee.
View Article and Find Full Text PDF