Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT)/poly (propylene carbonate) (PPC) multi-phase blends were prepared by melt processing technique under the presence of compatibilizer with various composition. The effect on the physical and the mechanical property with/without ESO was characterized with spectrophotometric analysis, mechanical properties, thermal properties, rheological properties and barrier properties, and the structure-properties relationship was assessed. The functional groups of PPC were found to effective to improve an interaction with carboxyl/hydroxyl group of PLA/PBAT binary blends to enhance the mechanical and physical properties on multi-phase blend system.
View Article and Find Full Text PDFThe stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO nanoparticles and the quenching of nanodot luminescence.
View Article and Find Full Text PDFMicroalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics.
View Article and Find Full Text PDFA unicellular red microalga was isolated from environmental freshwater in Korea, and its morphological, molecular, and biochemical properties were characterized. Morphological analysis revealed that the isolate was a unicellular biflagellated green microalga that formed a non-motile, thick-walled palmelloid or red aplanospore. To determine the taxonomical position of the isolate, its 18S rRNA and rbcL genes were sequenced and phylogenetic analysis was performed.
View Article and Find Full Text PDFWe isolated a xylan-degrading bacterium from seawater of Micronesia and identified it as Oceanicola sp. strain S124. We sequenced the Oceanicola sp.
View Article and Find Full Text PDF