Purpose: When applied alone, titanium (Ti) mesh may not effectively block the penetration of soft tissues, resulting in insufficient new bone formation. This study aimed to confer bioactivity and improve bone regeneration by doping calcium phosphate (CaP) precipitation and strontium (Sr) ranelate onto a TiO₂ nanotube (TNT) layer on the surface of a Ti mesh.
Methods: The TNT layer was obtained by anodizing on the Ti mesh, and CaP was formed by cyclic pre-calcification.
Recently, the use of orthodontic mini-screws as an anchorage for orthodontic treatment is increasing, and the degree of osseointegration of the mini-screws affects the performance of orthodontic treatment. This study aimed to evaluate the biocompatibility and osseointegration of Titanium 6Aluminum 4Vanadium (Ti-6Al-4V) alloy orthodontic mini-screws with an ibandronate-loaded TiO nanotube (TNT) layer. The TNT layer was formed on the surface of the Ti-6Al-4V alloy orthodontic mini-screws and loaded with ibandronate.
View Article and Find Full Text PDFObjective: This study evaluated the effect of cyclic pre-calcification treatment on the improvement of bioactivity and osseointegration of Ti-6Al-4V mini-screws.
Methods: The experimental groups were: an untreated group (UT), an anodized and heat-treated group (AH), and an anodized treatment followed by cyclic pre-calcification treatment group (ASPH). A bioactive material with calcium phosphate was coated on the mini-screws, and its effects on bioactivity and osseointegration were evaluated in in vitro and in vivo tests of following implantation in the rat tibia.
In this study, a hydrogel using single and double crosslinking was prepared using GelMA, a natural polymer, and the effect was evaluated when the double crosslinked hydrogel and tannic acid were treated. The resulting hydrogel was subjected to physicochemical property evaluation, biocompatibility evaluation, and animal testing. The free radicals generated through APS/TEMED have a scaffold form with a porous structure in the hydrogel, and have a more stable structure through photo crosslinking.
View Article and Find Full Text PDFIn the field of bone tissue, maintaining adequate mechanical strength and tissue volume is an important part. Recently, biphasic calcium phosphate (BCP) was fabricated to solve the shortcomings of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), and it is widely studied in the field of bone-tissue engineering. In this study, a composite hydrogel was fabricated by applying BCP to gelatin methacrylate (GelMA).
View Article and Find Full Text PDFThis study examined the effects of 3 mol % yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic surface treatments on the tensile bond strength and surface characteristics of enamel. To measure the tensile bond strength, the 3Y-TZP and tooth specimens were manufactured in a mini-dumbbell shape and divided into four groups based on the type of 3Y-TZP surface treatment: polishing (P), 110 µm alumina sandblasting (S), 110 µm alumina sandblasting combined with selective infiltration etching (SS), and 110 µm alumina sandblasting combined with MDP (10-methacryloyloxydecyl dihydrogen phosphate)-containing silane primer (SP). After surface treatment, the surface roughness, wettability, and surface changes were examined, and the tensile bond strength was measured.
View Article and Find Full Text PDFMaterials (Basel)
February 2017
As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations. This, study analyzed the shear bond strength (SBS) between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al₂O₃ sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer).
View Article and Find Full Text PDFObjectives: The purpose of this study was to assess the effect of single and combined applications of fluoride on the amount of fluoride release, and the remineralization and physical properties of enamel.
Materials And Methods: Each of four fluoride varnish and gel products (Fluor Protector, FP, Ivoclar Vivadent; Tooth Mousse Plus, TM, GC; 60 Second Gel, A, Germiphene; CavityShield, CS, 3M ESPE) and two fluoride solutions (2% sodium fluoride, N; 8% tin(ii) fluoride, S) were applied on bovine teeth using single and combined methods (10 per group), and then the amount of fluoride release was measured for 4 wk. The electron probe microanalysis and the Vickers microhardness measurements were conducted to assess the effect of fluoride application on the surface properties of bovine teeth.