In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.
View Article and Find Full Text PDFA miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography.
View Article and Find Full Text PDFFor real-time dosimetry in electron beam therapy, an integrated fiber-optic dosimeter (FOD) is developed using a water-equivalent dosimeter probe, four transmitting optical fibers, and a multichannel light-measuring device. The dosimeter probe is composed of two inner sensors, a scintillation sensor and a Cerenkov sensor, and each sensor has two different channels. Accordingly, we measured four separate light signals from each channel in the dosimeter probe, simultaneously, and then obtained the scintillation and Cerenkov signals using a subtraction method.
View Article and Find Full Text PDF