Publications by authors named "Seokwon Jo"

Article Synopsis
  • - Type 2 diabetes (T2D) occurs when the pancreas can't produce enough insulin, and recent studies link the improper sensing of nutrients by O-GlcNAcylation and mTORC1 to β-cell failure.
  • - The research highlights the connection between OGT (an enzyme essential for O-GlcNAcylation) and mTORC1 in regulating the health and function of insulin-producing β-cells, showing that reduced activity of both is observed in T2D models.
  • - O-GlcNAcylation is shown to positively impact mTORC1 signaling while negatively affecting autophagy; adjusting mTORC1 can help improve β-cell mass in diabetes, emphasizing O
View Article and Find Full Text PDF

The importance of sexual dimorphism has been highlighted in recent years since the National Institutes of Health's mandate on considering sex as a biological variable. Although recent studies have taken strides to study both sexes side by side, investigations into the normal physiological differences between males and females are limited. In this study, we aimed to characterized sex-dependent differences in glucose metabolism and pancreatic β-cell physiology in normal conditions using C57BL/6J mice, the most common mouse strain used in metabolic studies.

View Article and Find Full Text PDF

The metabolic health trajectory of an individual is shaped as early as prepregnancy, during pregnancy, and lactation period. Both maternal nutrition and metabolic health status are critical factors in the programming of offspring toward an increased propensity to developing type 2 diabetes in adulthood. Pancreatic beta-cells, part of the endocrine islets, which are nutrient-sensitive tissues important for glucose metabolism, are primed early in life (the first 1000 days in humans) with limited plasticity later in life.

View Article and Find Full Text PDF
Article Synopsis
  • Suboptimal in utero conditions, like poor maternal nutrition and gestational diabetes, can negatively affect fetal development and future metabolic health, influencing birth weight and adult obesity risks.
  • Changes in placental mTOR signaling are linked to fetal growth: reduced signaling leads to growth restriction, while increased signaling results in overgrowth.
  • The study reveals that alterations in placental mTOR signaling impact adult offspring's metabolic responses, especially in liver tissue, with differentiated effects observed based on the genetic makeup of the offspring.
View Article and Find Full Text PDF

Arterial wall active mechanics are driven by resident smooth muscle cells, which respond to biological, chemical, and mechanical stimuli and activate their cytoskeletal machinery to generate contractile stresses. The cellular mechanoresponse is sensitive to environmental perturbations, often leading to maladaptation and disease progression. When investigated at the single cell scale, however, these perturbations do not consistently result in phenotypes observed at the tissue scale.

View Article and Find Full Text PDF

Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing the risk of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation.

View Article and Find Full Text PDF

Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing risks of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation.

View Article and Find Full Text PDF

Protein O-GlcNAcylation is a nutrient and stress-sensitive protein post-translational modification (PTM). The addition of an O-GlcNAc molecule to proteins is catalyzed by O-GlcNAc transferase (OGT), whereas O-GlcNAcase (OGA) enzyme is responsible for removal of this PTM. Previous work showed that OGT is highly expressed in the pancreas, and we demonstrated that hypo-O-GlcNAcylation in β-cells cause severe diabetes in mice.

View Article and Find Full Text PDF

Acute pancreatitis (AP) involves premature trypsinogen activation, which mediates a cascade of pro-inflammatory signaling that causes early stages of pancreatic injury. Activation of the transcription factor κB (NF-κB) and secretion of pro-inflammatory mediators are major events in AP. O-GlcNAc transferase (OGT), a stress-sensitive enzyme, was recently implicated to regulate NF-κB activation and inflammation in AP in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • In pregnancies with obesity and gestational diabetes, the insulin signaling in the placenta may be disrupted, potentially impacting the offspring's metabolic health, although the exact connection is unclear.
  • This study investigates how the loss of the insulin receptor in the placenta affects the long-term health of mouse offspring, specifically looking at obesity and glucose balance.
  • Findings reveal that while the offspring with the insulin receptor deletion have normal weight and glucose control on a standard diet, they may show some protective effects against obesity when exposed to a high-fat diet, particularly if their mothers have had multiple pregnancies.
View Article and Find Full Text PDF

The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring's metabolic heath trajectory.

View Article and Find Full Text PDF

The nutrient-sensor O-GlcNAc transferase (Ogt), the sole enzyme that adds an O-GlcNAc-modification onto proteins, plays a critical role for pancreatic β-cell survival and insulin secretion. We hypothesized that β-cell Ogt overexpression would confer protection from β-cell failure in response to metabolic stressors, such as high-fat diet (HFD) and streptozocin (STZ). Here, we generated a β-cell-specific Ogt in overexpressing (βOgtOE) mice, where a significant increase in Ogt protein level and O-GlcNAc-modification of proteins were observed in islets under a normal chow diet.

View Article and Find Full Text PDF

-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in β-cells.

View Article and Find Full Text PDF
Article Synopsis
  • Placental dysfunction can cause fetal growth restriction, leading to higher risks of obesity and diabetes later on; OGT is a marker of this dysfunction.
  • This study investigates the effects of reduced placental OGT in mice, looking at how it influences metabolism and glucose management.
  • Results show that a partial reduction in placental OGT helps offspring maintain better weight and insulin sensitivity on a high-fat diet, suggesting it may play a protective role in metabolic challenges.
View Article and Find Full Text PDF

Fetal growth restriction, or low birth weight, is a strong determinant for eventual obesity and type 2 diabetes. Clinical studies suggest placental mechanistic target of rapamycin (mTOR) signaling regulates fetal birth weight and the metabolic health trajectory of the offspring. In the current study, we used a genetic model with loss of placental mTOR function (mTOR-KOPlacenta) to test the direct role of mTOR signaling on birth weight and metabolic health in the adult offspring.

View Article and Find Full Text PDF

The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo.

View Article and Find Full Text PDF

The purpose of this review is to integrate the role of nutrient-sensing pathways into -cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to -cell failure. These factors can disrupt the function of critical -cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes.

View Article and Find Full Text PDF

Protein translation is essential for cell physiology, and dysregulation of this process has been linked to aging-related diseases such as type 2 diabetes. Reduced protein level of a requisite scaffolding protein of the initiation complex, eIF4G1, downstream of nutrients and insulin signaling is associated with diabetes in humans and mice. In the current study, we tested the hypothesis that eIF4G1 is critical for β-cell function and glucose homeostasis by genetically ablating eIF4G1 specifically in β-cells in vivo (βeIF4G1 knockout [KO]).

View Article and Find Full Text PDF

Protein translation is essential for cell physiology, and dysregulation of this process has been linked to aging-related diseases such as type 2 diabetes. Reduced protein level of a requisite scaffolding protein of the initiation complex, eIF4G1, downstream of nutrients and insulin signaling, is associated with diabetes in both humans and mice. In the present study, we tested the hypothesis that eIF4G1 is critical for β-cell function and glucose homeostasis by genetically ablating eIF4G1 specifically in β-cells (βeIF4G1KO).

View Article and Find Full Text PDF

Maternal low-protein diet (LP) throughout gestation affects pancreatic β-cell fraction of the offspring at birth, thus increasing their susceptibility to metabolic dysfunction and type 2 diabetes in adulthood. The present study sought to strictly examine the effects of LP during the last week of gestation (LP12.5) alone as a developmental window for β-cell programming and metabolic dysfunction in adulthood.

View Article and Find Full Text PDF

During early obesity, pancreatic β cells compensate for increased metabolic demand through a transient phase of insulin hypersecretion that stabilizes blood glucose and forestalls diabetic progression. We find evidence that β cell O-GlcNAcylation, a nutrient-responsive post-translational protein modification regulated by O-GlcNAc transferase (OGT), is critical for coupling hyperlipidemia to β cell functional adaptation during this compensatory prediabetic phase. In mice, islet O-GlcNAcylation rises and falls in tandem with the timeline of secretory potentiation during high-fat feeding while genetic models of β-cell-specific OGT loss abolish hyperinsulinemic responses to lipids, in vivo and in vitro.

View Article and Find Full Text PDF

Although the developing pancreas is exquisitely sensitive to nutrient supply , it is not entirely clear how nutrient-driven post-translational modification of proteins impacts the pancreas during development. We hypothesized that the nutrient-sensing enzyme O-GlcNAc transferase (Ogt), which catalyzes an O-GlcNAc-modification onto key target proteins, integrates nutrient-signaling networks to regulate cell survival and development. In this study, we investigated the heretofore unknown role of Ogt in exocrine and endocrine islet development.

View Article and Find Full Text PDF

An early hallmark of type 2 diabetes is a failure of proinsulin-to-insulin processing in pancreatic β-cells, resulting in hyperproinsulinemia. Proinsulin processing is quite sensitive to nutrient flux, and β-cell-specific deletion of the nutrient-sensing protein modifier OGlcNAc transferase (βOGTKO) causes β-cell failure and diabetes, including early development of hyperproinsulinemia. The mechanisms underlying this latter defect are unknown.

View Article and Find Full Text PDF

Maternal hypertension during pregnancy is a major risk factor for intrauterine growth restriction (IUGR), which increases susceptibility to cardiovascular and metabolic disease in adulthood through unclear mechanisms. The aim of this study was to characterize the pancreatic β-cell area and function in the fetal rat offspring of a reduced uterine perfusion pressure (RUPP) model of gestational hypertension. At embryonic day 19.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: