Publications by authors named "Seokhee Shin"

MoS is a promising material to replace the Pt catalyst in the electrochemical hydrogen evolution reaction (HER). It is well known that the activity of the MoS catalyst in the HER is significantly promoted by doping cobalt atoms. Recently, the Co-Mo-S phase, in which cobalt atoms decorate the edge positions of the MoS slabs, has been identified as a co-catalytic phase in the Co-doped MoS (Co-MoS) with low Co content.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs).

View Article and Find Full Text PDF

Amorphous molybdenum sulfide (MoSx) has been identified as an excellent catalyst for the hydrogen evolution reaction (HER). It is still a challenge to prepare amorphous MoSx as a more active and stable catalyst for the HER. Here the amorphous MoSx catalysts are prepared on carbon fiber paper (CFP) substrates at 200 °C by a simple hydrothermal method using molybdic acid and thioacetamide.

View Article and Find Full Text PDF

Recently amorphous MoS2 thin film has attracted great attention as an emerging material for electrochemical hydrogen evolution reaction (HER) catalyst. Here we prepare the amorphous MoS2 catalyst on Au by atomic layer deposition (ALD) using molybdenum hexacarbonyl (Mo(CO)6) and dimethyl disulfide (CH3S2CH3) as Mo and S precursors, respectively. Each active site of the amorphous MoS2 film effectively catalyzes the HER with an excellent turnover frequency of 3 H2/s at 0.

View Article and Find Full Text PDF

Recently MoS₂ with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manner of layer-by-layer, there is little literature on ALD of MoS₂ due to a lack of suitable chemistry. Here we report MoS₂ growth by ALD using molybdenum hexacarbonyl and dimethyldisulfide as Mo and S precursors, respectively.

View Article and Find Full Text PDF