Publications by authors named "SeokYeong Lee"

Despite great progress in developing mode-selective light emission technologies based on self-emitting materials, few rewritable displays with mode-selective multiple light emissions have been demonstrated. Herein, we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence (FL), room-temperature phosphorescence (RTP), and electroluminescence (EL). The display comprises coplanar electrodes separated by a gap, a polymer composite with FL inorganic phosphors (EL/FL layer), and a polymer composite with solvent-responsive RTP additives (RTP layer).

View Article and Find Full Text PDF

In this paper, we propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, SVBRDF, and 3D spatially-varying lighting. While multi-view images have been widely used for object-level inverse rendering, scene-level inverse rendering has primarily been studied using single-view images due to the lack of a dataset containing high dynamic range multi-view images with ground-truth geometry, material, and spatially-varying lighting. To improve the quality of scene-level inverse rendering, a novel framework called Multi-view Attention Inverse Rendering (MAIR) was recently introduced.

View Article and Find Full Text PDF

Despite significant progress in developing artificial synapses to emulate the human nervous system for bio-signal transmission, synapses with thermo-adaptive coloration and soft actuators driven by temperature change have seldom been reported. Herein, a photonic neuro-actuating synaptic skin is presented enabling thermoresponsive synaptic signal transmission, color variation, and actuation. First, a thermoresponsive display synapse is developed based on a 3-terminal ion-gel transistor with a poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) semiconducting channel mixed with 2D titanium carbide (TiCT) MXene and a thermo-adaptive 1D block copolymer (BCP) photonic crystal (PC) gate insulator.

View Article and Find Full Text PDF

Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength-tunable coloration as well as variable light intensity PL is not adequately demonstrated yet. Herein, a rewritable PL and structural color (SC) display suitable for dual-responsive optical encryption developed with a stimuli-responsive SC of a block copolymer (BCP) photonic crystal (PC) with alternating in-plane lamellae, of which a variety of 3D and 2D perovskite nanocrystals is preferentially self-assembled with characteristic PL, is presented.

View Article and Find Full Text PDF

Optical encryption technologies based on room-temperature light-emitting materials are of considerable interest. Herein, we present three-dimensional (3D) printable dual-light-emitting materials for high-performance optical pattern encryption. These are based on fluorescent perovskite nanocrystals (NCs) embedded in metal-organic frameworks (MOFs) designed for phosphorescent host-guest interactions.

View Article and Find Full Text PDF

The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of moisture-driven energy generator (MEG) that efficiently generates electricity using humidity, without needing a separate water source.
  • The device features a bilayer design with a specially treated MXene aerogel and a durable PAM hydrogel, enabling high electricity output across a wide humidity range (20% to 95%).
  • This innovative MEG can power commercial electronics in various outdoor settings and also functions as a self-powered sensor that can detect finger bending and facial expressions.
View Article and Find Full Text PDF

The resemblance between electrons and optical waves has strongly driven the advancement of mesoscopic physics, evidenced by the widespread use of terms such as fermion or electron optics. However, electron waves have yet to be understood in open cavity structures which have provided contemporary optics with rich insight towards non-Hermitian systems and complex interactions between resonance modes. Here, we report the realization of an open cavity resonator in a two-dimensional electronic system.

View Article and Find Full Text PDF

The development of human-interactive sensing displays (HISDs) that simultaneously detect and visualize stimuli is important for numerous cutting-edge human-machine interface technologies. Therefore, innovative device platforms with optimized architectures of HISDs combined with novel high-performance sensing and display materials are demonstrated. This study comprehensively reviews the recent advances in HISDs, particularly the device architectures that enable scaling-down and simplifying the HISD, as well as material designs capable of directly visualizing input information received by various sensors.

View Article and Find Full Text PDF

With recent advances in interactive displays, the development of a stand-alone interactive display with no electrical interconnection is of great interest. Here, a wireless stand-alone interactive display (WiSID), enabled by direct capacitive coupling, consisting of three layers: two in-plane metal electrodes separated by a gap, a composite layer for field-induced electroluminescence (EL) and inverse piezoelectric sound, and a stimuli-responsive layer, from bottom to top, is presented. Alternating current power necessary for field-induced EL and inverse piezoelectric sound is wirelessly transferred from a power unit, with two in-plane electrodes remotely separated from the WiSID.

View Article and Find Full Text PDF

The development of electrodes with high conductivity, optical transparency, and reliable mechanical flexibility and stability is important for numerous solution-processed photoelectronic applications. Although transparent TiCT MXene electrodes with high conductivity are promising, their suitability for displays remains limited because of the high sheet resistance, which is caused by undesirable flake junctions and surface roughness. Herein, a flexible and transparent electrode has been fabricated that is suitable for a full-solution-processed quantum dot light-emitting diode (QLED).

View Article and Find Full Text PDF

MXenes (TiCT) are two-dimensional transition-metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes with high environmental stability suitable for various flexible organic electronic devices have rarely been demonstrated. By laminating a thin polymer film onto a solution-processed MXene layer to protect the MXene film from harsh environmental conditions, we present transparent and flexible MXene electronic devices.

View Article and Find Full Text PDF

Development of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce non-volatile and rewritable magnetic field-dependent display.

View Article and Find Full Text PDF

Lightweight and flexible tactile learning machines can simultaneously detect, synaptically memorize, and subsequently learn from external stimuli acquired from the skin. This type of technology holds great interest due to its potential applications in emerging wearable and human-interactive artificially intelligent neuromorphic electronics. In this study, an integrated artificially intelligent tactile learning electronic skin (e-skin) based on arrays of ferroelectric-gate field-effect transistors with dome-shape tactile top-gates, which can simultaneously sense and learn from a variety of tactile information, is introduced.

View Article and Find Full Text PDF

Quantum point contacts (QPC) are a primary component in mesoscopic physics and have come to serve various purposes in modern quantum devices. However, fabricating a QPC that operates robustly under extreme conditions, such as high bias or magnetic fields, still remains an important challenge. As a solution, we have analyzed the trench-gated QPC (t-QPC) that has a central gate in addition to the split-gate structure used in conventional QPCs (c-QPC).

View Article and Find Full Text PDF

The direct sensing and storing of the information of liquids with different polarities are of significant interest, in particular, through means related to human senses for emerging biomedical applications. Here, we present an interactive platform capable of sensing and storing the information of liquids. Our platform utilises sound arising from liquid-interactive ferroelectric actuation, which is dependent upon the polarity of the liquid.

View Article and Find Full Text PDF

In addition to the demand for stimuli-responsive sensors that can detect various vital signals in epidermal skin, the development of electronic skin displays that quantitatively detect and visualize various epidermal stimuli such as the temperature, sweat gland activity, and conductance simultaneously are of significant interest for emerging human-interactive electronics used in health monitoring. Herein, a novel interactive skin display with epidermal stimuli electrode (ISDEE) allowing for the simultaneous sensing and display of multiple epidermal stimuli on a single device is presented. It is based on a simple two-layer architecture on a topographically patterned elastomeric polymer composite with light-emitting inorganic phosphors, upon which two electrodes are placed with a certain parallel gap.

View Article and Find Full Text PDF