Publications by authors named "SeokJun Hong"

The study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences.

View Article and Find Full Text PDF

Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced imaging techniques to analyze how different parts of the hippocampus connect with specific cortical pathways during brain development, with the front part linked to the anterior temporal pathway and the back part to the posterior medial pathway.
  • * The study found that as brains develop, there is a shift in connectivity from the back to the front of the hippocampus, emphasizing its role in episodic memory and identifying key regions that influence how the hippocampus integrates into broader brain functions.
View Article and Find Full Text PDF

Objective: Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the diversity in the progression and characteristics of Temporal Lobe Epilepsy (TLE) by analyzing a group of patients and comparing them with a control group.
  • Researchers utilized advanced imaging techniques and neuropsychological evaluations to identify different subtypes and stages of brain pathology in TLE patients.
  • Findings revealed three distinct trajectory subtypes in TLE patients, highlighting the variability in their clinical outcomes and suggesting that TLE does not follow a uniform course across individuals.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization.

View Article and Find Full Text PDF

The cortical patterning principle has been a long-standing question in neuroscience, yet how this translates to macroscale functional specialization in the human brain remains largely unknown. Here we examine age-dependent differences in resting-state thalamocortical connectivity to investigate its role in the emergence of large-scale functional networks during early life, using a primarily cross-sectional but also longitudinal approach. We show that thalamocortical connectivity during infancy reflects an early differentiation of sensorimotor networks and genetically influenced axonal projection.

View Article and Find Full Text PDF
Article Synopsis
  • - Multimodal neuroimaging is a cutting-edge approach that helps scientists explore both the structure and function of the human brain, revealing important patterns known as spatial gradients.
  • - This paper discusses how recent advances in gradient techniques have grown popular in neuroscience due to efforts like data sharing and open-source software, along with workshops for early career researchers.
  • - The authors argue that the enthusiasm for gradient methods reflects a strong, collaborative community effort, suggesting that this model can guide future advancements in neuroinformatics, although challenges still exist in refining theories and methods.
View Article and Find Full Text PDF

Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative.

View Article and Find Full Text PDF

Eating behavior is highly heterogeneous across individuals and cannot be fully explained using only the degree of obesity. We utilized unsupervised machine learning and functional connectivity measures to explore the heterogeneity of eating behaviors measured by a self-assessment instrument using 424 healthy adults (mean ± standard deviation [SD] age = 47.07 ± 18.

View Article and Find Full Text PDF

Autism spectrum disorder is a common neurodevelopmental condition showing connectome disorganization in sensory and transmodal cortices. However, alterations in the inter-hemispheric asymmetry of structural connectome are remained to be investigated. Here, we studied structural connectome asymmetry in individuals with autism using dimensionality reduction techniques and assessed its topological underpinnings by associating with network communication measures.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function.

View Article and Find Full Text PDF

Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear.

View Article and Find Full Text PDF

The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing.

View Article and Find Full Text PDF

Obtaining precise and detailed parcellations of the human brain has been a major focus of neuroscience research. Here, we present a multimodal dataset, MYATLAS, based on histology-derived myeloarchitectonic parcellations for use with contemporary neuroimaging analyses software. The core of MYATLAS is a novel 3D neocortical, surface-based atlas derived from legacy myeloarchitectonic histology studies.

View Article and Find Full Text PDF

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD.

View Article and Find Full Text PDF

Analysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, relying not only on statistical methods, but increasingly on associations with respect to other brain-derived features such as gene expression, histological data, and functional as well as cognitive architectures. Here, we introduce BrainStat - a toolbox for (i) univariate and multivariate linear models in volumetric and surface-based brain imaging datasets, and (ii) multidomain feature association of results with respect to spatial maps of post-mortem gene expression and histology, task-based fMRI meta-analysis, as well as resting-state fMRI motifs across several common surface templates. The combination of statistics and feature associations into a turnkey toolbox streamlines analytical processes and accelerates cross-modal research.

View Article and Find Full Text PDF

Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin.

View Article and Find Full Text PDF

A wearable silent speech interface (SSI) is a promising platform that enables verbal communication without vocalization. The most widely studied methodology for SSI focuses on surface electromyography (sEMG). However, sEMG suffers from low scalability because of signal quality-related issues, including signal-to-noise ratio and interelectrode interference.

View Article and Find Full Text PDF

Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention.

View Article and Find Full Text PDF

Background: Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry.

Methods: We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain.

View Article and Find Full Text PDF
Article Synopsis
  • Brain imaging studies are increasingly using machine learning to classify diseases in individual participants, but how well these models work can depend significantly on the diversity of the population being studied.
  • The researchers used a method called propensity scores to assess how variations in demographics and other factors affect predictive accuracy and pattern stability in two clinical groups: the Autism Brain Imaging Data Exchange (ABIDE) and the Healthy Brain Network (HBN).
  • The findings suggest that diversity in these populations can lead to unreliable brain patterns, particularly in areas associated with the default mode network, emphasizing the need to rethink current methods for addressing population diversity in research.
View Article and Find Full Text PDF

Clinical heterogeneity has been one of the main barriers to develop effective biomarkers and therapeutic strategies in autism spectrum disorder (ASD). Recognizing this challenge, much effort has been made in recent neuroimaging studies to find biologically more homogeneous subgroups (called 'neurosubtypes') in autism. However, most approaches have rarely evaluated how much the employed features in subtyping represent the core anomalies of ASD, obscuring its utility in actual clinical diagnosis.

View Article and Find Full Text PDF