ACS Appl Mater Interfaces
October 2022
ACS Appl Mater Interfaces
December 2021
Recently, reticular materials, such as metal-organic frameworks and covalent organic frameworks, have been proposed as an active insulating layer in resistive switching memory systems through their chemically tunable porous structure. A resistive random access memory (RRAM) cell, a digital memristor, is one of the most outstanding emergent memory devices that achieves high-density electrical information storage with variable electrical resistance states between two terminals. The overall design of the RRAM devices comprises an insulating layer sandwiched between two metal electrodes (metal/insulator/metal).
View Article and Find Full Text PDFA new oxo-bridged chromium-molybdenum heterometallic complex, O-CrMoHC ([Cr(MoO)O(OAc)(DMF)]·2DMF), was synthesized by using a simple solvothermal reaction. In this complex, the octahedrally coordinated Cr(III) and tetrahedrally coordinated Mo(VI) metal centers are bridged by oxo ligands. O-CrMoHC has in-plane π-conjugation systems, which are interconnected by noncoordinating DMF molecules.
View Article and Find Full Text PDFBackground: Rotavirus is one of the most common causes of infantile enteritis. In common enterocolitis, probiotic organisms, including Lactobacilli, are effective in treating diarrhea. A new species, Lactobacillus plantarum (LRCC5310), which was shown to inhibit the adherence and proliferation of rotavirus in the small intestine through animal experiments, was investigated for the efficacy and safety of patients with rotaviral enteritis.
View Article and Find Full Text PDFA quadruple bond formed between d-block or f-block atoms is an interesting research topic due to its unique nature including a supershort bonding distance and narrow energy gap between δ and δ*. Among various multiply bonded complexes, quadruply bonded Cr(ii) acetates are considered useful to control the δ-δ* energy gap by the Lewis basicity of additional ligands. However, the synthesis and preparation of the high-quality, large-sized crystals of Cr(ii) acetates coordinated with axial ligands (Cr(OAc)L) have been difficult due to their vulnerability to O, a representative oxidizing agent under aerobic conditions.
View Article and Find Full Text PDFThe fecal morphology, defecation frequency, bowel function, intestinal motility, and fecal bacterial composition were evaluated to investigate the laxative effect of probiotic chocolate containing Streptococcus thermophilus MG510 and Lactobacillus plantarum LRCC5193 (LYC) on loperamide-induced constipated rats. Daily oral administration of LYC in constipated rats for two weeks was shown to significantly increase (n = 14) the defecation frequency, fecal moisture content, and relative abundance of fecal Lactobacillus and Faecalibacterium prausnitzii. Moreover, histological analysis of the distal colon of constipated rats revealed that LYC treatment can also increase the thickness of the colonic mucosa and muscle layers, and crypt of Lieberkühn.
View Article and Find Full Text PDFInflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease, is a group of chronic and relapsing inflammatory conditions within the gastrointestinal tract. An increase in intestinal epithelial cell (IEC) apoptosis is a major characteristic of UC. Tumor necrosis factor-α (TNF-α) plays an essential role in the regulation of apoptosis.
View Article and Find Full Text PDFThis study involves an investigation of the probiotic properties of lactic acid bacteria isolated from Kimchi, and their potential applications in chocolate. Lactobacillus plantarum-LRCC5193 (LP-LRCC5193) demonstrated a significantly higher degree of heat, acid, and bile acid tolerance compared to other Kimchi isolates. The intestinal adhesion assay also revealed that 84.
View Article and Find Full Text PDFThis study was designed to select potent cholesterol-lowering probiotic strains on HepG2 cell and investigate the effect of selected strain, Lactobacillus plantarum LRCC 5273 and LRCC 5279 in hypercholesterolemic mice. In the results, LP5273 group showed significantly reduced total and LDL cholesterol compared to HCD group. In addition to significantly up-regulated hepatic mRNA expression of LXR-α and CYP7A1, intestinal LXR-α and ABCG5 were significantly up-regulated in LP5273 group.
View Article and Find Full Text PDFMaterials exhibiting excitation-wavelength-dependent photoluminescence, PL, are useful in a range of biomedical and optoelectronic applications. This paper describes a nanoparticulate material whose PL is tunable across the entire visible range and is achieved without adjusting particle size, any postsynthetic doping, or surface modification. A straightforward thermal decomposition of rhenium (VII) oxide precursor yields nanoparticles that comprise Re atoms at different oxidation states.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2017
In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2017
Freestanding MOF films up to six-inches across and replicating various surface (micro)patterns are prepared via a templated growth method. When grown on copper supports, these films have preferred orientation of the constituent crystallites, translating into markedly different wetting properties of the film's two surfaces (water-pinning vs. water repellant).
View Article and Find Full Text PDFUnder non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells.
View Article and Find Full Text PDFIn diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are typically poor electrical conductors, which limits their uses in sensors, fuel cells, batteries, and other applications that require electrically conductive, high surface area materials. Although metal nanoclusters (NCs) are often added to MOFs, the electrical properties of these hybrid materials have not yet been explored. Here, we show that adding NCs to a MOF not only imparts moderate electrical conductivity to an otherwise insulating material but also renders it photoconductive, with conductivity increasing by up to 4 orders of magnitude upon light irradiation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2014
Single crystals of a cyclodextrin-based metal-organic framework (MOF) infused with an ionic electrolyte and flanked by silver electrodes act as memristors. They can be electrically switched between low and high conductivity states that persist even in the absence of an applied voltage. In this way, these small blocks of nanoporous sugar function as a non-volatile RRAM memory elements that can be repeatedly read, erased, and re-written.
View Article and Find Full Text PDFNanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA.
View Article and Find Full Text PDFZinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection.
View Article and Find Full Text PDFLasing action by planar-, fiber-, or ring-type waveguide has been extensively investigated with different types of microcavities such as thin films, wires, cylindrical tubes, or ribbons. However, the lasing action by sharp bending waveguide, which promises efficient interconnection of amplified light in the photonic circuits, remains unexplored. Here, we report the first observation of microcavity effects in the organic rectangular microtubes (RMTs) with sharp bends (ca.
View Article and Find Full Text PDFLiquid GeCl(4) precursors have been employed to grow into one dimensional Ge nanowires (NWs) via a vapor-liquid-solid (VLS) process, in which Si, supplied as a form of liquid SiCl(4), plays a critical role for the successful formation of Ge NWs.
View Article and Find Full Text PDFThe single crystal structure of a micrometre-scale copper hexadecafluoro-phthalocyanine (F(16)CuPc) ribbon synthesized by vaporization-condensation-recrystallization (VCR) process was resolved by using a synchrotron X-ray diffractometer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2009
Stacking up: One-dimensional single-crystalline rectangular nanotubes (RNTs) of 5,10,15,20-tetra(4-pyridyl)porphyrin (H(2)TPyP, see picture) are synthesized by a vaporization-condensation-recrystallization process. The single-crystal X-ray diffraction and selected-area electron diffraction data reveal that the H(2)TPyP RNTs form by self-stacking of H(2)TPyP units through hydrogen-bonding, H-pi, and pi-pi intermolecular interactions.
View Article and Find Full Text PDFJ Microbiol Biotechnol
January 2007
Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs.
View Article and Find Full Text PDF