Lens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.
View Article and Find Full Text PDFThe ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.
View Article and Find Full Text PDFLaser particles (LPs) emitting narrowband spectra across wide spectral ranges are highly promising for high-multiplex optical barcoding. Here, we present LPs based on indium phosphide (InP) nanodisks, operating in the near-infrared wavelength range of 740-970 nm. Utilizing low-order whispering gallery resonance modes in size-tuned nanodisks, we achieved an ultrawide color palette with 27% bandwidth utilization and nanometer-scale linewidth.
View Article and Find Full Text PDFBrillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions.
View Article and Find Full Text PDFWe developed a translational prototype antimicrobial blue light (ABL) device for treating skin wounds with ABL. Partial-thickness surgical wounds were created in live swine, an animal whose skin is considered the most like human skin, then heavily contaminated and left untreated for 24 hours with methicillin-resistant Staphylococcus aureus (MRSA). ABL treatment stabilized and reduced MRSA infection by greater than four orders of magnitude (>99.
View Article and Find Full Text PDFThe fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins (FPs), and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality.
View Article and Find Full Text PDFPlasmonic lasers have traditionally been built on flat metal substrates. Here, we introduce substrate-free plasmonic lasers created by coating semiconductor particles with an optically thin layer of noble metal. This architecture supports plasmonic "hinge" modes highly localized along the particle's edges and corners, exhibiting Purcell factors exceeding 100 and Q-factors of 15-20 near the plasmon resonance frequency.
View Article and Find Full Text PDFThe fixation and permeabilization of cells are essential for labeling intracellular biomarkers in flow cytometry. However, these chemical treatments often alter fragile targets, such as cell surface and fluorescent proteins, and can destroy chemically-sensitive fluorescent labels. This reduces measurement accuracy and introduces compromises into sample workflows, leading to losses in data quality.
View Article and Find Full Text PDFMicro- and nano-disk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with sub-nanometer accuracy.
View Article and Find Full Text PDFAccurate measurement of gingiva's biomechanical properties in vivo has been an active field of research but remained an unmet challenge. Currently, there are no noninvasive tools that can accurately quantify tensile and shear moduli, which govern gingival health, with sufficiently high accuracy. This study presents the application of high-frequency optical coherence elastography (OCE) for characterizing gingival tissue in both porcine models and human subjects.
View Article and Find Full Text PDFDyes with aggregation-induced emission (AIE) properties have gained interests due to their bright luminescence in solid-state aggregates. While fluorescence from AIE dyes have been widely exploited, relatively little is known about aggregation-induced emission. Here, we investigated stimulated emission of tetraphenylethene (TPE)-based organoboron AIE dyes, TPEQBN, in thin films and in microcavity lasers.
View Article and Find Full Text PDFUnderstanding corneal stiffness is valuable for improving refractive surgery, detecting corneal abnormalities, and assessing intraocular pressure. However, accurately measuring the elastic properties, specifically the tensile and shear moduli that govern mechanical deformation, has been challenging. To tackle this issue, we have developed guided-wave optical coherence elastography that can simultaneously excite and analyze symmetric (S0) and anti-symmetric (A0) elastic waves in the cornea at around 10 kHz frequencies, enabling us to extract tensile and shear properties from measured wave dispersion curves.
View Article and Find Full Text PDFAdvances in immunology, immuno-oncology, drug discovery and vaccine development demand improvements in the capabilities of flow cytometry to allow it to measure more protein markers per cell at multiple timepoints. However, the size of panels of fluorophore markers is limited by overlaps in fluorescence-emission spectra, and flow cytometers typically perform cell measurements at one timepoint. Here we describe multi-pass high-dimensional flow cytometry, a method leveraging cellular barcoding via microparticles emitting near-infrared laser light to track and repeatedly measure each cell using more markers and fewer colours.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
May 2024
Objective: The mechanical properties of corneal tissues play a crucial role in determining corneal shape and have significant implications in vision care. This study aimed to address the challenge of obtaining accurate in vivo data for the human cornea.
Methods: We have developed a high-frequency optical coherence elastography (OCE) technique using shear-like antisymmetric (A0)-mode Lamb waves at frequencies above 10 kHz.
Semiconductor-based laser particles (LPs) with exceptionally narrowband spectral emission have been used in biological systems for cell tagging purposes. Fabrication of these LPs typically requires highly specialized lithography and etching equipment, and is typically done in a cleanroom environment, hindering the broad adoption of this exciting new technology. Here, using only easily accessible laboratory equipment, we demonstrate a simple layer-by-layer fabrication strategy that overcomes this obstacle.
View Article and Find Full Text PDFJ Mech Phys Solids
December 2022
Surface waves play important roles in many fundamental and applied areas from seismic detection to material characterizations. Supershear surface waves with propagation speeds greater than bulk shear waves have recently been reported, but their properties are not well understood. Here we describe theoretical and experimental results on supershear surface waves in rubbery materials.
View Article and Find Full Text PDFUnderstanding corneal stiffness is valuable for improving refractive surgery, detecting corneal abnormalities, and assessing intraocular pressure. However, accurately measuring the elastic properties, particularly the tensile and shear moduli that govern mechanical deformation, has been challenging. To tackle this issue, we have developed guided-wave optical coherence elastography that can simultaneously excite and analyze symmetric (S0) and anti-symmetric (A0) elastic waves in the cornea at frequencies around 10 kHz and allows us to extract tensile and shear properties from measured wave dispersion curves.
View Article and Find Full Text PDFVisualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz.
View Article and Find Full Text PDFNanolasers have great potential for both on-chip light sources and optical barcoding particles. We demonstrate ultrasmall InGaP and InGaAsP disk lasers with diameters down to 360 nm (198 nm in height) in the red spectral range. Optically pumped, room-temperature, single-mode lasing was achieved from both disk-on-pillar and isolated particles.
View Article and Find Full Text PDFStimulated Brillouin scattering is an emerging technique for probing the mechanical properties of biological samples. However, the nonlinear process requires high optical intensities to generate sufficient signal-to-noise ratio (SNR). Here, we show that the SNR of stimulated Brillouin scattering can exceed that of spontaneous Brillouin scattering with the same average power levels suitable for biological samples.
View Article and Find Full Text PDFType 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing β cells. Thus, the identification of β cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human β cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates β cell viability.
View Article and Find Full Text PDFDespite advances in high-dimensional cellular analysis, the molecular profiling of dynamic behaviors of cells in their native environment remains a major challenge. We present a method that allows us to couple the physiological behaviors of cells in an intact murine tissue to deep molecular profiling of individual cells. This method enabled us to establish a novel molecular signature for a striking migratory cellular behavior following injury in murine airways.
View Article and Find Full Text PDFSelf-luminescent photodynamic therapy (PDT) has gained attention owing to its potential to enable effective phototherapy without the bottleneck of shallow light penetration into tissues. However, the biosafety concerns and low cytotoxic effect of self-luminescent reagents in vivo have been problems. Here, we demonstrate efficacious bioluminescence (BL)-PDT by using bioluminescence resonance energy transfer (BRET) conjugates of a clinically approved photosensitizer, Chlorin e6, and a luciferase, Renilla reniformis; both derived from biocompatible, natural molecules.
View Article and Find Full Text PDFWhile photoluminescent graphene quantum dots (GQDs) have long been considered very suitable for bioimaging owing to their protein-like size, superhigh photostability and in vivo long-term biosafety, their unique and crucial bioimaging applications in vivo remain unreachable. Herein, planted GQDs are presented as an excellent tool for in vivo fluorescent, sustainable and multimodality tumor bioimaging in various scenarios. The GQDs are in situ planted in the poly(ethylene glycol) (PEG) layer of PEGylated nanoparticles via a bottom-up molecular approach to obtain the NPs-GQDs-PEG nanocomposite.
View Article and Find Full Text PDF