A poleward shift of the Hadley cell (HC) edge in a warming climate, which contributes to the expansion of drought-prone subtropical regions, has been widely documented. The question addressed here is whether this shift is reversible with CO removal. By conducting large-ensemble experiments where CO concentrations are systematically increased and then decreased to the present-day level, we show that the poleward-shifted HC edge in a warming climate does not return to its present-day state when CO concentrations are reduced.
View Article and Find Full Text PDFThe underlying mechanism that couples the Quasi-Biennial Oscillation (QBO) and the Madden-Julian oscillation (MJO) has remained elusive, challenging our understanding of both phenomena. A popular hypothesis about the QBO-MJO connection is that the vertical extent of MJO convection is strongly modulated by the QBO. However, this hypothesis has not been verified observationally.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2022
Understanding the regional hydrological response to varying CO concentration is critical for cost-benefit analysis of mitigation and adaptation polices in the near future. To characterize summer monsoon rainfall change in East Asia in a changing CO pathway, we used the Community Earth System Model (CESM) with 28 ensemble members in which the CO concentration increases at a rate of 1% per year until its quadrupling peak, i.e.
View Article and Find Full Text PDFUnderstanding air pollution in East Asia is of great importance given its high population density and serious air pollution problems during winter. Here, we show that the day-to-day variability of East Asia air pollution, during the recent 21-year winters, is remotely influenced by the Madden-Julian Oscillation (MJO), a dominant mode of subseasonal variability in the tropics. In particular, the concentration of particulate matter with aerodynamic diameter less than 10 micron (PM) becomes significantly high when the tropical convections are suppressed over the Indian Ocean (MJO phase 5-6), and becomes significantly low when those convections are enhanced (MJO phase 1-2).
View Article and Find Full Text PDFIn 2016, the westerly quasi-biennial oscillation (WQBO) in the equatorial stratosphere was unprecedentedly disrupted by westward forcing near 40 hPa; this was followed by another disruption in 2020. Strong extratropical Rossby waves propagating toward the tropics were considered the main cause of the disruptions, but why the zonal wind is reversed only in the middle of the WQBO remains unclear. Here, we show that strong westerly winds in the equatorial lower stratosphere (70 to 100 hPa) help to disrupt the WQBO by hindering the wind reversal at its base.
View Article and Find Full Text PDFTo investigate the response of the general circulation and global transport of heat through both atmosphere and ocean to two-types of carbon dioxide removal scenario, we performed an earth system model experiment in which we imposed a pulse-type quadrupling of CO forcing for 50 years and a gradual peak-and-decline of four-time CO forcing. We found that the results from two experiments are qualitatively similar to each other. During the forcing-on period, a dominant warming in the upper troposphere over the tropics and on the surface at high latitudes led to a slowdown in the Hadley circulation, but the poleward atmospheric energy transport was enhanced due to an increase in specific humidity.
View Article and Find Full Text PDFThe subseasonal relationship between Arctic and Eurasian surface air temperature (SAT) is re-examined using reanalysis data. Consistent with previous studies, a significant negative correlation is observed in cold season from November to February, but with a local minimum in late December. This relationship is dominated not only by the warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) pattern.
View Article and Find Full Text PDFIn this study, an investigation is carried out to evaluate and compare the material and physical properties of Grade 5 Titanium alloy (Ti6Al4V G5) samples of three different impeller manufacturers. The study aims to identify the efficient impeller core material from different Ti6Al4V G5 manufacturers. Ultrasonic fatigue test for Ti6Al4V samples of 100 horsepower (hp) centrifugal compressor impeller parts is performed before and after heat treatment.
View Article and Find Full Text PDFThe Holocene thermal maximum was characterized by strong summer solar heating that substantially increased the summertime temperature relative to preindustrial climate. However, the summer warming was compensated by weaker winter insolation, and the annual mean temperature of the Holocene thermal maximum remains ambiguous. Using multimodel mid-Holocene simulations, we show that the annual mean Northern Hemisphere temperature is strongly correlated with the degree of Arctic amplification and sea ice loss.
View Article and Find Full Text PDFMid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation.
View Article and Find Full Text PDFPurpose Of Review: Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence by models.
View Article and Find Full Text PDFRecent changes of surface particulate matter (PM) concentration in the Seoul Metropolitan Area (SMA), South Korea, are puzzling. The long-term trend of surface PM concentration in the SMA declined in the 2000s, but since 2012 its concentrations have tended to incline, which is coincident with frequent severe hazes in South Korea. This increase puts the Korean government's emission reduction efforts in jeopardy.
View Article and Find Full Text PDFThe recent hiatus in global-mean surface temperature warming was characterized by a Eurasian winter cooling trend, and the cause(s) for this cooling is unclear. Here we show that the observed hiatus in Eurasian warming was associated with a recent trend toward weakened stratospheric polar vortices. Specifically, by calculating the change in Eurasian surface air temperature associated with a given vortex weakening, we demonstrate that the recent trend toward weakened polar vortices reduced the anticipated Eurasian warming due to increasing greenhouse gas concentrations.
View Article and Find Full Text PDFSuccessive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere.
View Article and Find Full Text PDF