Bacterial urinary tract infections (UTIs) are prevalent in dogs and necessitate antibiotic intervention. However, the emergence of multidrug-resistant (MDR) bacteria poses significant challenges to antibiotic therapy. Although fosfomycin has been demonstrated to achieve and maintain high concentrations in urine, suggesting its potential for treating UTIs in dogs, its efficacy and the resistance profiles of urinary pathogens from canine UTIs remain elusive.
View Article and Find Full Text PDFTwo-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using CuO nanotubes for metal ions and HBDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite.
View Article and Find Full Text PDFThree-dimensional (3D) printers extruding filaments through a fixed nozzle encounter a conflict between high resolution, requiring small diameters, and high speed, requiring large diameters. This limitation is especially pronounced in multiscale architectures featuring both bulk and intricate elements. Here, we introduce adaptive nozzle 3D printing (AN3DP), a technique enabling dynamic alteration of nozzle diameter and cross-sectional shape during printing.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
Semiconductor-based photocatalyst materials played an important role in the degradation of organic compounds in recent years. Photocatalysis is a simple, cost-effective, and environmentally friendly process for degrading organic compounds. In this work, vanadium pentoxide (VO) and VO/RGO (reduced graphene oxide) composite were synthesized by a hydrothermal method.
View Article and Find Full Text PDFGenome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories.
View Article and Find Full Text PDFTransition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges.
View Article and Find Full Text PDFRecently, polymer-based materials have been used in various filed of applications, but their low thermal conductivity restricts their uses due to the high interfacial thermal resistance. Therefore, in this study, one-dimensional thin-walled carbon nanotube (1D-TWCNT) and two-dimensional boron nitride nanosheet (2D-BNNS) fillers were used to enhance the thermal properties of polyvinyl alcohol (PVA). An important factor to be considered in enhancing the thermal properties of PVA is the interfacial configuration strategy, which provides sufficient pathways for phonon transport and the controlled loss of the intrinsic thermal properties of the filler nanomaterial.
View Article and Find Full Text PDFAmong energy storage devices, supercapacitors have received considerable attention in recent years owing to their high-power density and extended cycle life. Researchers are currently making efforts to improve energy density using different asymmetric cell configurations, which may provide a wider potential window. Many studies have been conducted on positive electrodes for asymmetric supercapacitor devices; however, studies on negative electrodes have been limited.
View Article and Find Full Text PDFTetracycline (TC) is a persistent antibiotic used in many countries, including China, India, and the United States of America (USA), because of its low price and effectiveness in enhancing livestock production. However, such antibiotics can have toxic effects on living organisms via complexation with metals, and their accumulation leading to teratogenicity and carcinogenicity. In this study, two-dimensional molybdenum disulfide/titanium dioxide (MoS/TiO) composites with different amounts of molybdenum disulfide (MoS) were prepared via a simple, cost-effective, and pollution-free hydrothermal route.
View Article and Find Full Text PDFCatalytic reduction of nitroaromatic compounds present in wastewater by nanostructured materials is a promising process for wastewater treatment. A multifunctional electrode based on ternary spinal nickel cobalt oxide is used in the catalytic reduction of a nitroaromatic compound and supercapacitor application. In this study, we designed nanoflakes- like nickel cobaltite (NiCoO) using a simple, chemical, cost-effective hydrothermal method.
View Article and Find Full Text PDFThe use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked.
View Article and Find Full Text PDFRapid technological development requires sustainable, pure, and clean energy systems, such as hydrogen energy. It is difficult to fabricate efficient, highly active, and inexpensive electrocatalysts for the overall water splitting reaction: the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The present research work deals with a simple hydrothermal synthesis route assisted with ultrasound that was used to fabricate a 3D nanoflower-like porous CoMoS electrocatalyst.
View Article and Find Full Text PDFThe study deals with the hydrothermal growth of a CuCoO hierarchical 3D nanoflower-like array on carbon cloth (CuCoO@CC), which is a useful multifunctional electrode. The electrocatalytic oxygen evolution reaction (OER) study of the CuCoO@CC electrode shows high durability and good activity in 1 M KOH. As an energy storage electrode, it shows a high specific capacitance of 1438 Fg at 10 mA cm in a 3 M KOH electrolyte.
View Article and Find Full Text PDFTopology optimization for mechanism synthesis has been developed for the simultaneous determination of the number and dimension of mechanisms. However, these methods can be used to synthesize linkage mechanisms that consist only of links and joints because other types of mechanical elements such as gears cannot be simultaneously synthesized. In this study, we aim to develop a gradient-based topology optimization method which can be used to synthesize mechanisms consisting of both linkages and gears.
View Article and Find Full Text PDFThis paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever.
View Article and Find Full Text PDFCyclosporine A (CsA) and tacrolimus (FK506) are the most important immunosuppressive compounds that block the activation of helper T-cells. In this study, we investigated the effects of CsA and FK506 on growth and senescence of articular chondrocytes. Chondrocytes from young rabbit cartilage entered senescence after 8.
View Article and Find Full Text PDFThe real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals.
View Article and Find Full Text PDFBi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e.
View Article and Find Full Text PDFA comprehensive study involving numerical analysis and experimental validation of temperature transients within a microchamber was performed for thermocycling operation in an integrated centrifugal microfluidic platform for polymerase chain reaction (PCR) amplification. Controlled heating and cooling of biological samples are essential processes in many sample preparation and detection steps for micro-total analysis systems. Specifically, the PCR process relies on highly controllable and uniform heating of nucleic acid samples for successful and efficient amplification.
View Article and Find Full Text PDFRev Sci Instrum
September 2013
A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals.
View Article and Find Full Text PDF