Publications by authors named "Seok Mun Kang"

Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.

View Article and Find Full Text PDF

A breakthrough utilizing an anionic redox reaction (O/O) for charge compensation has led to the development of high-energy cathode materials in sodium-ion batteries. However, its reaction results in a large voltage hysteresis due to the structural degradation arising from an oxygen loss. Herein, an interesting P2-type Mn-based compound exhibits a distinct two-phase behavior preserving a high-potential anionic redox (≈4.

View Article and Find Full Text PDF

Integrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO as a model intercalation compound.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) have attracted enormous attention in recent years due to the high abundance and low cost of sodium. However, in contrast to lithium-ion batteries, conventional graphite is unsuitable for SIB anodes because it is much more difficult to intercolate the larger Na ions into graphite layers. Therefore, it is critical to develop new anode materials for SIBs for practical use.

View Article and Find Full Text PDF

Although sodium ion batteries (NIBs) have gained wide interest, their poor energy density poses a serious challenge for their practical applications. Therefore, high-energy-density cathode materials are required for NIBs to enable the utilization of a large amount of reversible Na ions. This study presents a P2-type NaCoTiO (x < 0.

View Article and Find Full Text PDF