Publications by authors named "Seok Kyun Kim"

Article Synopsis
  • Sphingomyelinase (SMase) converts sphingomyelin into ceramides, which are important for triggering apoptosis by facilitating cytochrome c release from the mitochondria.
  • Researchers have identified a novel mitochondrial Mg-independent SMase (mt-iSMase) from rat brain tissue, which was purified significantly and shown to have optimal activity at a specific pH level.
  • The localization of mt-iSMase in the intermembrane space of mitochondria suggests its crucial role in apoptosis, reinforcing the idea that it might be a key player in ceramide production and mitochondrial outer membrane permeabilization.
View Article and Find Full Text PDF

Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions.

View Article and Find Full Text PDF

Dopamine (DA) reuptake is the primary mechanism to terminate dopaminergic transmission in the synaptic cleft. The dopamine transporter (DAT) has an important role in the regulation of DA reuptake. This study provides anatomical and physiological evidence that DAT recycling is regulated by ceramide kinase via the sphingomyelin pathway.

View Article and Find Full Text PDF

Sepsis, a systemic inflammatory response syndrome, remains a potentially lethal condition. (S)-1-α-Naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712) is noted as a drug candidate for sepsis. Many studies have demonstrated its significant anti-inflammatory effects.

View Article and Find Full Text PDF

Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH-optimum and Mg(2+)-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes.

View Article and Find Full Text PDF

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important regulator of the maturation and function of cells in the granulocyte and macrophage lineages, and also plays a significant role in wound healing. In a previous study, we expressed human GM-CSF in rice cells (rice cell-derived human GM-CSF; rhGM-CSF). The purpose of the present study was to evaluate its effect on wound healing in oral mucositis.

View Article and Find Full Text PDF

Ceramide has been suggested to be not only a tumor-suppressive lipid but also a regulator of phagocytosis. We examined whether exogenous cell-permeable C(6)-ceramide enhances the phagocytic activity of Kupffer cells (KCs) and affects the level of cellular ceramides. Rat KCs were isolated by collagenase digestion and differential centrifugation, using Percoll system.

View Article and Find Full Text PDF

The Ca(2+)-independent phospholipase A(2) (iPLA(2)) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA(2) from bovine brain.

View Article and Find Full Text PDF

Brain tissue contains multiple forms of Phospholipase A(2) (PLA(2)) whose activities are involved in intracellular and intercellular signalling related to normal functions such as long-term potentiation, neurotransmitter release, cell growth and differentiation. Among them, we focused on regulatory mechanism of cPLA(2)α (Group IVA cytosolic PLA(2)) in brain tissue. In the present study, we report the identification of a cPLA(2)-activating protein (cPLAP) in the bovine brain.

View Article and Find Full Text PDF

Sphingomyelinase catalyzes the hydrolysis of sphingomyelin to generate ceramide, an important molecule involved in the regulation of various cellular responses. In this study, we partially purified the neutral sphingomyelinase2 (nSMase2) and identified the inhibitors, D-lyxophytosphingosine and D-arabino-phytosphingosine, which have an inhibitory effect on nSMase2 in a concentration-dependent manner. A Dixon plot of each phytosphingosines revealed their probable inhibitory pattern, i.

View Article and Find Full Text PDF

Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors.

View Article and Find Full Text PDF

Ceramide serves as a second messenger produced from sphingomyelin by the activation of sphingomyelinase (SMase). Here, we suggest that neutral SMase 2 (nSMase2) may regulate dopamine (DA) uptake. nSMase2 siRNA-transfected PC12 cells showed lower levels of nSMase activity and ceramide than scramble siRNA-transfected and control cells.

View Article and Find Full Text PDF

Ceramide is produced by sphingomyelinase (SMase) and it plays a key role in cellular responses such as apoptosis. In this study, we report the purification and characterization of neutral SMase2 (nSMase2) from bovine brain tissue. Triton X-100 extracts of bovine brain membranes were purified in nine steps, including sequential chromatography.

View Article and Find Full Text PDF

Cellular hypoxia can lead to cell death or adaptation and has important effects on development, physiology, and pathology. Here, we investigated the role and regulation of ceramide in hypoxia-induced apoptosis of SH-SY5Y neuroblastoma cells. Hypoxia increased the ceramide concentration; subsequently, we observed biochemical changes indicative of apoptosis, such as DNA fragmentation, nuclear staining, and poly ADP-ribose polymerase (PARP) cleavage.

View Article and Find Full Text PDF

Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a glycoprotein and hematopoietic growth factors that regulates the proliferation of myeloid precursor cells and activates mature granulocytes and macrophages. In a previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study, we examined the repeated dose toxicity of rhGM-CSF in SD rats.

View Article and Find Full Text PDF

As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.

View Article and Find Full Text PDF

Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies.

View Article and Find Full Text PDF