Publications by authors named "Seok Jae Kim"

Monitoring the distribution of magnetic nanoparticles (MNPs) in the vascular system is an important task for the advancement of precision therapeutics and drug delivery. Despite active targeting using active motilities, it is required to visualize the position and concentration of carriers that reach the target, to promote the development of this technology. In this work, a feasibility study is presented on a tomographic scanner that allows monitoring of the injected carriers quantitatively in a relatively short interval.

View Article and Find Full Text PDF

Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors.

View Article and Find Full Text PDF
Article Synopsis
  • A helical microrobot for revascularization in small vessels, like coronary arteries, mimics corkscrew motion to facilitate mechanical atherectomy and reduce clinician radiation exposure.
  • The microrobot features a spherical joint and guidewire, utilizing an external electromagnetic system for autonomous navigation, tested in animal experiments with artificial thrombus.
  • Results show success in navigating and unclogging thrombosis in rat models, highlighting the technology's potential to improve medical microrobotics for clinical use while minimizing radiation risks.
View Article and Find Full Text PDF

Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity.

View Article and Find Full Text PDF

In order to increase the biocompatibility and bioactivity of chitosan, hydroxyapatite was in situ combined into the spin-coated chitosan layer on the titanium substrate by incubating in modified simulated body fluid (m-SBF). The calcium phosphate/chitosan (CaP/CS) composite prepared in m-SBF showed a homogeneous distribution of spherical nano-clusters. The hydrophilicity of the coatings was increased by performing NaOH post-treatment of CaP/CS composites, which also affected apatite formation.

View Article and Find Full Text PDF

Background: Endotracheal intubation usually causes transient hypertension and tachycardia. The cardiovascular and arousal responses to endotracheal and endobronchial intubation were determined during rapid-sequence induction of anesthesia in normotensive and hypertensive elderly patients.

Methods: Patients requiring endotracheal intubation with (HT, n = 30) or without hypertension (NT, n = 30) and those requiring endobronchial intubation with (HB, n = 30) or without hypertension (NB, n = 30) were included in the study.

View Article and Find Full Text PDF

Adenosine and excitatory amino acids have been known to be involved in modulating nociceptive transmission at the spinal level. The authors assessed the characteristics of the interaction of the adenosine-excitatory amino acid antagonist combinations in the spinal cord of rats on the formalin-induced nociception. Intrathecal NMDA antagonist ((5R, 10S)-(+)-5-methyl-10,11-dihydro-(5)H-dibenzo[a[,]d]cyclohepten-5,10-imine hydrogen maleate, MK801, 30 microg) and AMPA antagonist (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[F]quinoxaline-7-sulfonamide, NBQX, 3 microg) decreased the total number of flinches during both phases in the formalin test.

View Article and Find Full Text PDF

Zaprinast is a phosphodiesterase inhibitor that is active in various models of pain when administered locally. In addition, the antinociception of zaprinast is involved in the nitric oxide (NO)-cGMP pathway. However, the effect of zaprinast administered spinally has not been examined.

View Article and Find Full Text PDF