Publications by authors named "Seok J Hong"

Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.

View Article and Find Full Text PDF

Background And Objectives: Obstructive sleep apnea (OSA) is a prevalent sleep disorder characterized by recurrent upper airway obstruction, leading to disrupted sleep and various health complications. Positional OSA (POSA) refers to patients whose OSA severity is significantly influenced by body position, especially when lying supine. This study aimed to evaluate the polysomnographic characteristics of POSA and non-positional OSA (non-POSA) and to assess their clinical implications.

View Article and Find Full Text PDF
Article Synopsis
  • Solar reflectance and thermal emissivity are essential measures for assessing passive cooling strategies, and 3D printing techniques allow the application of these materials in innovative ways.
  • The study introduces hollow silica nanoparticles (HSNPs) that are designed for 3D printing and achieve effective cooling under sunlight, significantly improving the cooling performance of various materials.
  • HSNPs demonstrate high solar reflectivity and thermal emissivity, outperforming conventional materials like silica nanoparticles and commercial products in outdoor cooling tests.
View Article and Find Full Text PDF

Selective detection and monitoring of hazardous gases with similar properties are highly desirable to ensure human safety. The development of flexible and room-temperature (RT) operable chemiresistive gas sensors provides an excellent opportunity to create wearable devices for detecting hazardous gases surrounding us. However, chemiresistive gas sensors typically suffer from poor selectivity and zero-cross selectivity toward similar types of gases.

View Article and Find Full Text PDF

Background: Skin wounds, whether medically or incidentally induced, are always at a risk of becoming infected, but the infection risks are greater when the wounds are recovering under ischemic, poorly perfused conditions. which frequently infects cutaneous and soft tissue, can infect to a greater extent when wounds are poorly perfused. Bad as this may be, both MSSA and MRSA strains of can cause severe infections, with MRSA being considered more aggressive.

View Article and Find Full Text PDF

Background: Women with cosmetic implants have lower rates of future breast cancer than the general population. We hypothesized the implant foreign body response could induce a local protective anti-cancer immunosurveillance. We expanded on our previous finding which showed women with breast implants have elevated antibody responses to certain breast cancer proteins.

View Article and Find Full Text PDF

Sarcopenia is a contributing factor in the development of long-COVID syndrome. We aimed to investigate how intercostal muscle mass changes over 3 months compared to other chest wall muscles following COVID-19 infection, along with identifying factors contributing to intercostal muscle loss during follow-up. We retrospectively studied 110 COVID-19 patients, analyzing muscle masses in the intercostal, pectoralis, and thoracic 12th vertebra level (T12) on initial and follow-up CT scans.

View Article and Find Full Text PDF

Objectives: Although mandibular advancement device (MAD) treatment is effective for obstructive sleep apnea (OSA), some concerns remain regarding its potential therapeutic impact and side effects. Thus, we developed a novel MAD that auto-titrates depending on its position in patients with OSA. We conducted a clinical trial to determine the efficacy of an auto-titrating mandibular advancement device (AMAD) for treating OSA.

View Article and Find Full Text PDF

Dermal fibrosis is a consequence of damage to skin and is accompanied by dysfunction and cosmetic disfigurement. Improved understanding of the pathological factors driving skin fibrosis is critical to development of therapeutic modalities. Here, we describe that the Wnt signalling antagonist SFRP2 is upregulated in organotypic keratinocyte cultures upon experimental reduced hydration, a model that simulates the aberrant epidermal barrier state characteristic of several skin pathologies, including those that manifest in development of fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • Many patients treated with FDA-approved CAR T cells see their disease progress, especially with solid cancers and certain types of blood cancers like T cell lymphomas.
  • A major challenge in adoptive T cell therapies is the dysfunction of CAR T cells, which struggle to expand and last after being infused.
  • The study reveals that knocking out the CD5 gene using CRISPR-Cas9 can improve the antitumor abilities of CAR T cells by enhancing their function and persistence, suggesting CD5 as a key target for improving T cell therapies.
View Article and Find Full Text PDF

Staphylococcus aureus is one of the most commonly detected bacteria in diabetic skin and soft tissue infections. The incidence and severity of skin and soft tissue infections are higher in patients with diabetes, indicating a potentiating mechanism of hyperglycaemia and infection. The goal of this review is to explore the metabolic and virulence factor adaptations of S.

View Article and Find Full Text PDF

Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC).

View Article and Find Full Text PDF

In the era of artificial intelligence (AI), there is a growing interest in replicating human sensory perception. Selective and sensitive bio-inspired sensory receptors with synaptic plasticity have recently gained significant attention in developing energy-efficient AI perception. Various bio-inspired sensory receptors and their applications in AI perception are reviewed here.

View Article and Find Full Text PDF

Challenges such as poor dispersion and insufficient polarization of BaTiO (BTO) nanoparticles (NPs) within poly(vinylidene fluoride--trifluoroethylene) (P(VDF-TrFE)) composites have hindered their piezoelectricity, limiting their uses in pressure sensors, nanogenerators, and artificial sensory synapses. Here, we introduce a high-performance piezoelectric nanocomposite material consisting of P(VDF-TrFE)/modified-BTO (mBTO) NPs for use as a self-activating component in a piezotronic artificial mechanoreceptor. To generate high-performance piezoelectric nanocomposite materials, the surface of BTO is hydroxylated, followed by the covalent attachment of (3-aminopropyl)triethoxysilane to improve the dispersibility of mBTO NPs within the P(VDF-TrFE) matrix.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how α1-adrenergic receptors (α1A-ARs) regulate mitochondrial function in heart cells and their potential protective role against chronic β-adrenergic receptor (β-AR) activation.
  • Researchers employed various techniques, including respirometry and electron microscopy, to analyze mitochondrial performance in both healthy and damaged heart tissue from different mouse models.
  • Findings indicate that α1A-ARs enhance fatty acid metabolism and mitochondrial function, providing protection against oxidative stress and cardiac dysfunction, especially after injury like myocardial infarction.
View Article and Find Full Text PDF

Introduction: Pancreatic cancer cells generally accumulate large numbers of lipid droplets (LDs), which regulate lipid storage. To promote rapid diagnosis, an automatic pancreatic cancer cell recognition system based on a deep convolutional neural network was proposed in this study using quantitative images of LDs from stain-free cytologic samples by optical diffraction tomography.

Methods: We retrieved 3D refractive index tomograms and reconstructed 37 optical images of one cell.

View Article and Find Full Text PDF

Point-of-care testing (POCT) for low-concentration protein biomarkers remains challenging due to limitations in biosensor sensitivity and platform integration. This study addresses this gap by presenting a novel approach that integrates a metal-enhanced fluorescence (MEF) biosensor within a capillary flow-driven microfluidic cartridge (CFMC) for the ultrasensitive detection of the Parkinson's disease biomarker, aminoacyl-tRNA synthetase complex interacting multi-functional protein 2 (AIMP-2). Crucial point to this approach is the orientation-controlled immobilization of capture antibody on a nanodimple-structured MEF substrate within the CFMC.

View Article and Find Full Text PDF

Background: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF.

View Article and Find Full Text PDF

Background And Objectives: Zonulin is a human protein that regulates intercellular tight junctions and increases the permeability of the intestinal epithelium. In light of the increasing focus on zonulin's role in numerous chronic inflammatory diseases, this study aimed to investigate whether differences exist in serum zonulin levels and bronchial epithelium zonulin expression in vivo between asthma and normal groups, using a mouse model.

Methods: Sixteen mice were utilized in this study, divided evenly between the normal and asthma groups.

View Article and Find Full Text PDF

Fibrosis is a pathological repair process common among organs, that responds to tissue damage by replacement with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis.

View Article and Find Full Text PDF

Many factors regulate scar formation, which yields a modified extracellular matrix (ECM). Among ECM components, microfibril-associated proteins have been minimally explored in the context of skin wound repair. Microfibril-associated protein 5 (MFAP5), a small 25 kD serine and threonine rich microfibril-associated protein, influences microfibril function and modulates major extracellular signaling pathways.

View Article and Find Full Text PDF

Zonulin is a regulator of epithelial and endothelial barrier function. It regulates intestinal permeability through disrupting tight junctions. Defective epithelial barrier function is a hallmark of airway inflammation in asthma.

View Article and Find Full Text PDF

Cellular therapies show promise for treatment of fibrosis. A recent article presents a strategy and proof-of-concept for delivering stimulated cells to degrade hepatic collagen in vivo. A discussion is presented surrounding the strengths of this approach and the potential to generalize this strategy of optimizing cell sources and activation stimuli to treat other types of fibrosis.

View Article and Find Full Text PDF

The prevalence of fibrotic diseases and the lack of pharmacologic modalities to effectively treat them impart particular importance to the discovery of novel antifibrotic therapies. The repurposing of drugs with existing mechanisms of action and/or clinical data is a promising approach for the treatment of fibrotic diseases. One paradigm that pervades all fibrotic diseases is the pathological myofibroblast, a collagen-secreting, contractile mesenchymal cell that is responsible for the deposition of fibrotic tissue.

View Article and Find Full Text PDF

Background: The purpose of this study was to examine the relationship between the lobar emphysema ratio (LER) and tumor recurrence and survival in patients with stage I non-small cell lung cancer (NSCLC).

Methods: We enrolled 258 patients with surgically proven stage I NSCLC. These patients underwent noncontrast chest CT, and pulmonary lobe segmentation and lobar emphysema quantification were performed using commercially available software.

View Article and Find Full Text PDF