Predicting a ligand's bound pose to a target protein is a key component of early-stage computational drug discovery. Recent developments in machine learning methods have focused on improving pose quality at the cost of model runtime. For high-throughput virtual screening applications, this exposes a capability gap that can be filled by moderately accurate but fast pose prediction.
View Article and Find Full Text PDFIn the RNA World before the emergence of an RNA polymerase, nonenzymatic template copying would have been essential for the transmission of genetic information. However, the products of chemical copying with the canonical nucleotides (A, U, C, and G) are heavily biased toward the incorporation of G and C, which form a more stable base pair than A and U. We therefore asked whether replacing adenine (A) with diaminopurine (D) might lead to more efficient and less biased nonenzymatic template copying by making a stronger version of the A:U pair.
View Article and Find Full Text PDF2-Thiouridine (sU) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing sU:sU compared to those with U:U pairs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2021
The template-directed synthesis of RNA played an important role in the transition from prebiotic chemistry to the beginnings of RNA based life, but the mechanism of RNA copying chemistry is incompletely understood. We measured the kinetics of template copying with a set of primers with modified 3'-nucleotides and determined the crystal structures of these modified nucleotides in the context of a primer/template/substrate-analog complex. pH-rate profiles and solvent isotope effects show that deprotonation of the primer 3'-hydroxyl occurs prior to the rate limiting step, the attack of the alkoxide on the activated phosphate of the incoming nucleotide.
View Article and Find Full Text PDFSubstitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose.
View Article and Find Full Text PDFRecent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages.
View Article and Find Full Text PDFThe prebiotic synthesis of ribonucleotides is likely to have been accompanied by the synthesis of noncanonical nucleotides including the threo-nucleotide building blocks of TNA. Here, we examine the ability of activated threo-nucleotides to participate in nonenzymatic template-directed polymerization. We find that primer extension by multiple sequential threo-nucleotide monomers is strongly disfavored relative to ribo-nucleotides.
View Article and Find Full Text PDFThe abiotic synthesis of ribonucleotides is thought to have been an essential step toward the emergence of the RNA world. However, it is likely that the prebiotic synthesis of ribonucleotides was accompanied by the simultaneous synthesis of arabinonucleotides, 2'-deoxyribonucleotides, and other variations on the canonical nucleotides. In order to understand how relatively homogeneous RNA could have emerged from such complex mixtures, we have examined the properties of arabinonucleotides and 2'-deoxyribonucleotides in nonenzymatic template-directed primer extension reactions.
View Article and Find Full Text PDFNon-enzymatic RNA self-replication is integral to the emergence of the 'RNA World'. Despite considerable progress in non-enzymatic template copying, demonstrating a full replication cycle remains challenging due to the difficulty of separating the strands of the product duplex. Here, we report a prebiotically plausible approach to strand displacement synthesis in which short 'invader' oligonucleotides unwind an RNA duplex through a toehold/branch migration mechanism, allowing non-enzymatic primer extension on a template that was previously occupied by its complementary strand.
View Article and Find Full Text PDFWe report a chiral-squaramide-catalyzed enantio- and diastereoselective synthesis of α-allyl amino esters. The optimized protocol provides access to -carbamoyl-protected amino esters via nucleophilic allylation of readily accessible α-chloro glycinates. A variety of useful α-allyl amino esters were prepared, including crotylated products bearing vicinal stereocenters that are inaccessible through enolate alkylation, with high enantioselectivity (up to 97% ee) and diastereoselectivity (>10:1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
The emergence of primordial RNA-based life would have required the abiotic synthesis of nucleotides, and their participation in nonenzymatic RNA replication. Although considerable progress has been made toward potentially prebiotic syntheses of the pyrimidine nucleotides (C and U) and their 2-thio variants, efficient routes to the canonical purine nucleotides (A and G) remain elusive. Reported syntheses are low yielding and generate a large number of undesired side products.
View Article and Find Full Text PDF