Stable and continuous supply of essential biomolecules is critical to mimic in vivo microenvironments wherein spontaneous generation of various cell types occurs. Here, we report a new platform that enables highly efficient neuronal cell generation of neural stem cells using single metal-organic framework (MOF) nanoparticle-embedded nanopit arrays (SMENA). By optimizing the physical parameters of homogeneous periodic nanopatterns, each nanopit can confine single nMOFs (UiO-67) that are specifically designed for long-term storage and release of retinoic acid (RA).
View Article and Find Full Text PDFAdsorptive separation using narrow-micropore adsorbents has demonstrated the potential to separate hydrogen isotopes. In this work, we employed an isotope-responsive separation using cobalt formate. A D-responsive third sorption step was revealed, and consequently, a noticeable difference was observed in the uptakes of D and H.
View Article and Find Full Text PDFProgress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals.
View Article and Find Full Text PDFDeuterium has been recognized as an irreplaceable element in industrial and scientific research. However, hydrogen isotope separation still remains a huge challenge due to the identical physicochemical properties of the isotopes. In this paper, a partially fluorinated metal-organic framework (MOF) with copper, a so-called FMOFCu, was investigated to determine the separation efficiency and capacity of the framework for deuterium extraction from a hydrogen isotope mixture.
View Article and Find Full Text PDFFlexible perovskite solar cells (PSCs) have attracted considerable attention due to their excellent performance, low-cost, and great potential as an energy supplier for soft electronic devices. In particular, the design of charge transporting layers (CTLs) is crucial to the development of highly efficient and flexible PSCs. Herein, nanocrystalline Ti-based metal-organic framework (nTi-MOF) particles are synthesized to have ca.
View Article and Find Full Text PDF