Publications by authors named "SeoHyun Jo"

Soapwort (Saponaria officinalis) is a flowering plant from the Caryophyllaceae family with a long history of human use as a traditional source of soap. Its detergent properties are because of the production of polar compounds (saponins), of which the oleanane-based triterpenoid saponins, saponariosides A and B, are the major components. Soapwort saponins have anticancer properties and are also of interest as endosomal escape enhancers for targeted tumor therapies.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are a diverse class of plant natural products that include a number of medicinally important compounds. We set out to reconstitute the pathway for strictosidine, a key intermediate of all MIAs, from central metabolism in Nicotiana benthamiana. A disadvantage of this host is that its rich background metabolism results in the derivatization of some heterologously produced molecules.

View Article and Find Full Text PDF

Plant specialized metabolism serves as a rich resource of biologically active molecules for drug discovery. The acylated flavonol glycoside montbretin A (MbA) and its precursor myricetin 3--(6'--caffeoyl)-glucosyl rhamnoside (mini-MbA) are potent inhibitors of human pancreatic α-amylase and are being developed as drug candidates to treat type-2 diabetes. MbA occurs in corms of the ornamental plant montbretia (), but a system for large-scale MbA production is currently unavailable.

View Article and Find Full Text PDF

Seed germination is a complex process regulated by intrinsic hormonal cues such as abscisic acid (ABA) and gibberellin (GA), and environmental signals including temperature. Using pharmacological, molecular and metabolomics approaches, we show that supraoptimal temperature delays wheat seed germination through maintaining elevated embryonic ABA level via increased expression of ABA biosynthetic genes (TaNCED1 and TaNCED2), increasing embryo ABA sensitivity through upregulation of genes regulating ABA signalling positively (TaPYL5, TaSnRK2, ABI3 and ABI5) and decreasing embryo GA sensitivity via induction of TaRHT1 that regulates GA signalling negatively. Endospermic ABA and GA appeared to have minimal roles in regulating germination at supraoptimal temperature.

View Article and Find Full Text PDF