Publications by authors named "Seo-Jeong Yoon"

Article Synopsis
  • - Recent outbreaks of pathogens have led researchers to explore graphene as a potential antimicrobial agent due to its low toxicity and effective interaction with bacteria, making it attractive for antimicrobial applications.
  • - Integrating graphene into copper coatings can enhance their antimicrobial effects, but challenges in uniformly distributing graphene within the copper matrix have limited practical use; Cu-doped graphitic nanoplatelets (CuGnPs) offer a possible solution to this issue.
  • - Studies demonstrated that CuGnPs significantly reduced the survival of Staphylococcus aureus compared to controls, indicating that copper combined with graphene oxide can improve bacterial inhibition effectiveness.
View Article and Find Full Text PDF

Cyano-functionalized graphitic nanoplatelets (CyGNs) are synthesized by means of a mechanochemical reaction between graphite and acrylonitrile. The resulting CyGNs exhibit excellent mechanical properties and are highly dispersible in various solvents (i.e.

View Article and Find Full Text PDF

Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance.

View Article and Find Full Text PDF

Although polymers are very important and vastly used materials, their physical properties are limited. Therefore, they are reinforced with fillers to relieve diverse restrictions and expand their application areas. The exceptional properties of graphene make it an interesting material with huge potential for application in various industries and devices.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide microbial adaptive immunity against bacteriophages. In type I-F CRISPR-Cas systems, multiple Cas proteins (Csy1-4) compose a surveillance complex (Csy complex) with CRISPR RNA (crRNA) for target recognition. Here, we report the biochemical characterization of the Csy1-Csy2 subcomplex from , including the analysis of its interaction with crRNA and AcrF2, an anti-CRISPR (Acr) protein from a phage that infects The Csy1 and Csy2 proteins (XaCsy1 and XaCsy2, respectively) formed a stable heterodimeric complex that specifically bound the 8-nucleotide (nt) 5'-handle of the crRNA.

View Article and Find Full Text PDF