Publications by authors named "Seo Yeong Gim"

To provide efficient antioxidant capacities, proper carriers are needed to protect antioxidants against oxidative stress. Collagen mesh structure or chitosan gel was loaded with α-tocopherol and their effects were evaluated in bulk corn oil or oil-in-water (O/W) emulsion at 60 °C. Added collagen and chitosan enhanced oxidative stability in corn oil and O/W emulsions at 60 °C compared to corn oils without carriers or with addition of α-tocopherol ( < 0.

View Article and Find Full Text PDF

Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C.

View Article and Find Full Text PDF

In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT).

View Article and Find Full Text PDF

The effects of α-tocopherol on the oxidative stability and incorporation of deuterium in volatiles were evaluated in linoleic acid-water model systems treated at 60°C by analyzing headspace oxygen depletion, formation of lipid hydroperoxides, and profiles of headspace volatiles. Deuterium oxide accelerated the rates of linoleic acid oxidation compared to samples in deuterium-free water. As the concentration of α-tocopherol increased from 0 to 1500 ppm, the consumption of headspace oxygen and the formation of volatiles decreased, whereas the contents of lipid hydroperoxides did not decrease in the linoleic acid-water system.

View Article and Find Full Text PDF