Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.
View Article and Find Full Text PDFDynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.
View Article and Find Full Text PDFNon-invasive, low intensity focused ultrasound (FUS) is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.
View Article and Find Full Text PDFMotion artifacts, from such sources as heartbeats, respiration, or peristalsis, often degrade microscopic images or videos of live subjects. We have developed a method using circular optical coherence tomography (OCT) scans to track the transverse and axial motion of biological samples at speeds ranging from several micrometers per second to several centimeters per second. We achieve fast and high-precision measurements of the magnitude and direction of the sample's motion by adaptively controlling the circular scan pattern settings and applying interframe and intraframe analyses.
View Article and Find Full Text PDFNaive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14.
View Article and Find Full Text PDFTo reveal the three-dimensional microstructure and calcium dynamics of human heart organoids (hHOs), we developed a dual-modality imaging system combining the advantages of optical coherence tomography (OCT) and fluorescence microscopy. OCT provides high-resolution volumetric structural information, while fluorescence imaging indicates the electrophysiology of the hHOs' beating behavior. We verified that concurrent OCT motion mode (M-mode) and calcium imaging retrieved the same beating pattern from the heart organoids.
View Article and Find Full Text PDFOrganoids play an increasingly important role as in vitro models for studying organ development, disease mechanisms, and drug discovery. Organoids are self-organizing, organ-like three-dimensional (3D) cell cultures developing organ-specific cell types and functions. Recently, three groups independently developed self-assembling human heart organoids (hHOs) from human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDF