Background: This study investigates the prognostic value of M0 macrophage-related genes (M0MRGs) in esophageal cancer (ESCA) and identifies novel targets for immunotherapy.
Methods: Differentially expressed genes (DEGs) were screened with ESCA-related expression profile data (GSE5364 and GSE17351) from the GEO database, followed by GO and KEGG pathway enrichment analyses. Then, immune cell infiltration was examined with the CIBERSORT algorithm and multiplex fluorescence-based immunohistochemistry (MP-IHC).
Front Mol Biosci
September 2024
Background: The most common form of therapy for nonsmall cell lung cancer (NSCLC) in early stage is surgery-based combination therapy, including radiotherapy and immunotherapy. However, postoperative radiotherapy (PORT) of cancer is correlated with increasing risk of second primary malignancy (SPM), especially young-onset cancer cases. The authors aimed to quantify the risks of SPM associated with PORT treatment for young‑onset NSCLC in early stage.
View Article and Find Full Text PDFLung adenocarcinoma is a type of cancer that exhibits a wide range of clinical radiological manifestations, from ground-glass opacity (GGO) to pure solid nodules, which vary greatly in terms of their biological characteristics. Our current understanding of this heterogeneity is limited. To address this gap, we analyze 58 lung adenocarcinoma patients via machine learning, single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing, and we identify six lung multicellular ecotypes (LMEs) correlating with distinct radiological patterns and cancer cell states.
View Article and Find Full Text PDFDespite epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in patients with EGFR-mutant non-small cell lung cancer (NSCLC), acquired resistance inevitably develops, limiting clinical efficacy. We found that TET2 was poly-ubiquitinated by E3 ligase CUL7 and degraded in EGFR-TKI resistant NSCLC cells. Genetic perturbation of TET2 rendered parental cells more tolerant to TKI treatment.
View Article and Find Full Text PDFThe drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients.
View Article and Find Full Text PDFBackground: Chronic lung allograft dysfunction (CLAD) directly causes an abysmal long-term prognosis after lung transplantation (LTx), but effective and safe drugs are not available. Metformin exhibits high therapeutic potential due to its antifibrotic and immunomodulatory effects; however, it is unclear whether metformin exerts a therapeutic effect in CLAD. We sought to investigate the effect of metformin on CLAD based on rat models.
View Article and Find Full Text PDFInflammatory processes are essential for innate immunity and contribute to carcinogenesis in various malignancies, such as colorectal cancer, esophageal cancer and lung cancer. Pharmacotherapies targeting inflammation have the potential to reduce the risk of carcinogenesis and improve therapeutic efficacy of existing anti-cancer treatment. Non-steroidal anti-inflammatory drugs (NSAIDs), comprising a variety of structurally different chemicals that can inhibit cyclooxygenase (COX) enzymes and other COX-independent pathways, are originally used to treat inflammatory diseases, but their preventive and therapeutic potential for cancers have also attracted researchers' attention.
View Article and Find Full Text PDFBackground: Glycosylation is crucial for the stability and biological functions of proteins. The aberrant glycosylation of critical proteins plays an important role in multiple cancers, including lung adenocarcinoma (LUAD). STT3 oligosaccharyltransferase complex catalytic subunit A (STT3A) is a major isoform of N-linked glycosyltransferase that catalyzes the glycosylation of various proteins.
View Article and Find Full Text PDFBackground: Tyrosine kinase inhibitor (TKI) treatment has significantly improved the prognosis of oncogenic-driven lung adenocarcinoma (LUAD). However, drug resistance limits the long-term benefits of patients. Therefore, there is a pressing need to explore the mechanism of TKI resistance and identify new therapeutic targets.
View Article and Find Full Text PDFConstructed an immune-prognosis index (IPI) and divided lung adenocarcinoma (LUAD) patients into different subgroups according to IPI score, describe the molecular and immune characteristics of patients between different IPI subgroups, and explore their response to immune checkpoint blockade (ICB) treatment. Based on the transcriptome profile of LUAD patients in TCGA and immune gene sets from ImmPort and InnateDB, 15 hub immune genes were identified through correlation and Bayesian causal network analysis. Then, IPI was constructed with 5 immune genes by using COX regression analysis and verified with external datasets (GSE30219, GSE37745, GSE68465, GSE126044 and GSE135222).
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2022
Artificial intelligence is an advanced method to identify novel anticancer targets and discover novel drugs from biology networks because the networks can effectively preserve and quantify the interaction between components of cell systems underlying human diseases such as cancer. Here, we review and discuss how to employ artificial intelligence approaches to identify novel anticancer targets and discover drugs. First, we describe the scope of artificial intelligence biology analysis for novel anticancer target investigations.
View Article and Find Full Text PDFChemotherapy is still the most fundamental treatment for advanced cancers so far. Previous studies have indicated that immune cell infiltration (ICI) index could serve as a biomarker to predict chemotherapy benefit in breast cancer and colorectal cancer. However, due to different responses of tumor infiltrating immune cells (TIICs) to chemotherapy, the prediction efficiency of ICI index is not fully confirmed by now.
View Article and Find Full Text PDFPurpose: We assessed whether perioperative circulating tumor DNA (ctDNA) could be a biomarker for early detection of molecular residual disease (MRD) and prediction of postoperative relapse in resected non-small cell lung cancer (NSCLC).
Experimental Design: Based on our prospective, multicenter cohort on dynamic monitoring of ctDNA in lung cancer surgery patients (LUNGCA), we enrolled 950 plasma samples obtained at three perioperative time points (before surgery, 3 days and 1 month after surgery) of 330 stage I-III NSCLC patients (LUNGCA-1), as a part of the LUNGCA cohort. Using a customized 769-gene panel, somatic mutations in tumor tissues and plasma samples were identified with next-generation sequencing and utilized for ctDNA-based MRD analysis.
Background: There is limited information about thymosin α1 (Tα1) as adjuvant immunomodulatory therapy, either used alone or combined with other treatments, in patients with non-small cell lung cancer (NSCLC). This study aimed to evaluate the effect of adjuvant Tα1 treatment on long-term survival in margin-free (R0)-resected stage IA-IIIA NSCLC patients.
Methods: A total of 5746 patients with pathologic stage IA-IIIA NSCLC who underwent R0 resection were included.
Background: Bronchogenic cysts can be caused by errors in the growth of the ventral foregut. Localization of the bronchogenic cyst (BC) varies depending on the level of the abnormal budding. They are usually located in the lungs and mediastinum.
View Article and Find Full Text PDFObjective: To investigate the predictive value of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs).
Methods: We conducted a systemic search of PubMed, EMBASE, and the Cochrane Library from 1 January 2000 to 30 August 2020, to identify related studies. We combined the hazard ratio (HR) and 95% confidence interval (CI) to assess the correlation of PD-L1 expression with progression-free survival (PFS) and overall survival (OS).
Transl Lung Cancer Res
February 2021
Background: As a novel treatment, programmed cell death protein 1 (PD-1) inhibitor appears to be less effective in tumors of lung adenocarcinoma patients with epidermal growth factor receptor () mutation. Beta-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3) has reported to be associated with programmed death ligand 1 (PD-L1)/PD-1 interaction. However, the relationship between B3GNT3 and PD-L1 and its prognostic significance in.
View Article and Find Full Text PDFBackground: There are few effective therapies for coronavirus disease 2019 (COVID-19) upon the outbreak of the pandemic. To compare the effectiveness of a novel genetically engineered recombinant super-compound interferon (rSIFN-co) with traditional interferon-alpha added to baseline antiviral agents (lopinavir-ritonavir or umifenovir) for the treatment of moderate-to-severe COVID-19.
Method: In this multicenter randomized (1:1) trial, patients hospitalized with moderate-to-severe COVID-19 received either rSIFN-co nebulization or interferon-alpha nebulization added to baseline antiviral agents for no more than 28 days.
Transl Cancer Res
December 2020
Background: The incidence and mortality of lung cancer rank first among various malignant tumors. The lack of clear molecular classification and effective individualized treatment greatly limits the treatment benefits of patients. Long non-coding RNAs (lncRNAs) have been demonstrated widely involve in tumor progressing, and been proved easy to detect for occupying majority in transcriptome.
View Article and Find Full Text PDFAnn Transl Med
November 2019
Background: So far, there is a lack of reliable prognostic biomarkers for lung adenocarcinoma (ADC). Initially, we found that EF-hand and coiled-coil domain containing 1 (EFCC1) was a novel gene which was downregulated consistently with the progression of lung ADC in The Cancer Genome Atlas (TCGA) data through bioinformatics analysis. In this study, we aimed to evaluate the prognostic significance of EFCC1 in lung ADC in both TCGA data and clinical samples.
View Article and Find Full Text PDFInt J Nanomedicine
May 2019
Background: For the past few years, gene-therapy has recently shown considerable clinical benefit in cancer therapy, and the applications of gene therapies in cancer treatments continue to increase perennially. EZH2, an ideal candidate for tumor gene therapy, plays an important role in the tumorigenesis.
Methods: In this study, we developed a novel gene delivery system with a self-assembly method by Methoxy polyethylene glycol-polycaprolactone (MPEG-PCL) and DOTAP(DMC).
Anticancer Drugs
September 2019
Honokiol, a biphenolic neolignan with inappreciable toxicity isolated from Magnolia officinalis, has been reported to have antiangiogenic and antitumor properties in several tumor cell lines and tumor xenograft models. In our previous study, structural modification by chemical synthesis has been carried out to develop novel honokiol derivatives to improve antitumor activity and clarify the structure-activity relationship. Honokiol analogs, especially 3,5'-diformylated honokiol HK-(CHO)2, have been found to moderately block the newly grown segmental vessels from the dorsal aorta in the transgenic zebrafish-based assay, show antiangiogenic property, and exert medium cytotoxicity against two lung cell lines (Lewis lung carcinoma LL/2 cells and human non-small-cell lung cancer A549 cells).
View Article and Find Full Text PDF