Wide-bandgap perovskite solar cells (PSCs) with high open-circuit voltage (V) represent a compelling and emerging technological advancement in high-performing perovskite-based tandem solar cells. Interfacial engineering is an effective strategy to enhance V in PSCs by tailoring the energy level alignments between the constituent layers. Herein, n-type quinoxaline-phosphine oxide-based small molecules with strong dipole moments is designed and introduce them as effective cathode interfacial layers.
View Article and Find Full Text PDFLuminescent materials have many interesting applications, but it remains difficult to control the luminescence of organic materials and in particular to retain the same luminescence in solution and in the solid state, a property of interest for various imaging applications. In the present work, the fluorescent properties of the salt of 2,6-diaminopyridinium with dihydrogen phosphate have been explored. As a result of proton transfer from phosphoric acid to the pyridine nitrogen and the stabilizing effect of the two primary amines at the positions ortho to the pyridine nitrogen, the band gap between the HOMO and the LUMO is considerably diminished in comparison with that in 2,6-diaminopyridine.
View Article and Find Full Text PDF