Publications by authors named "Senthil Muthuswamy"

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy.

View Article and Find Full Text PDF

Purpose: Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options. We compared the efficacy of comprehensive precision medicine against that of the conventional treatment in PDAC.

Patients And Methods: We report a phase III trial of advanced PDAC in which patients were randomized (1:2) to a conventional treatment treated at physician's discretion (arm A) or to precision medicine (arm B).

View Article and Find Full Text PDF
Article Synopsis
  • Germline BRCA1 mutation carriers have a high breast cancer risk, but the reasons for this increased risk are not fully understood.
  • Researchers used a genetically engineered mouse model to show that the early onset of tumors in BRCA1 heterozygous mice can't be explained by the traditional "two-hit" hypothesis alone.
  • Advanced techniques like single-cell RNA sequencing revealed distinct chromatin alterations in normal Brca1 heterozygous cells, hinting at epigenetic changes that might promote cancer, with specific transcription factors identified as key players in tumor development.
View Article and Find Full Text PDF

Patient-derived organoid models of estrogen receptor-positive (ER+) breast cancer would provide a much-needed tool to understand drug resistance and disease progression better. However, the establishment and long-term maintenance of ER expression, function, and response in vitro remains a significant challenge. Here, we report the development of an ER+ breast tumor organoid medium (BTOM-ER) that conserves ER expression, estrogen responsiveness, and dependence, as well as sensitivity to endocrine therapy of ER+ patient-derived xenograft organoids (PDXO).

View Article and Find Full Text PDF

The study identifies an opportunity to discover a PKA-independent pathway downstream of oncogene GNAS for managing IPMN lesions and their progression to PDAC.

View Article and Find Full Text PDF

During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice.

View Article and Find Full Text PDF

CD4 T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4 T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4 antigen discovery platform.

View Article and Find Full Text PDF

Patient-derived organoid models of estrogen receptor-positive (ER+) breast cancer would provide a much-needed tool to understand drug resistance and disease progression better. However, the establishment and long-term maintenance of ER expression, function, and response in vitro remains a significant challenge. Here, we report the development of an ER+ breast tumor organoid medium (BTOM-ER) that conserves ER expression, estrogen responsiveness, and dependence, as well as sensitivity to endocrine therapy of ER+ patient-derived xenograft organoids (PDXO).

View Article and Find Full Text PDF

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy.

View Article and Find Full Text PDF

Ductal and acinar pancreatic organoids generated from human pluripotent stem cells (hPSCs) are promising models to study pancreatic diseases, including precursor lesions of pancreatic cancer. Genome sequencing studies have revealed that mutations in a G-protein (GNAS) are exclusively observed in intraductal papillary mucinous neoplasms (IPMNs), one of the most common cystic pancreatic precancerous lesions. GNAS cooperates with oncogenic KRAS to produce IPMN lesions in mice; however, the biological mechanisms by which oncogenic GNAS affects the ductal and acinar exocrine pancreas are not understood.

View Article and Find Full Text PDF

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e.

View Article and Find Full Text PDF

Background: Pancreatic cancer is a highly lethal malignancy often presenting with advanced disease and characterized by resistance to standard chemotherapy. Immune-based therapies such checkpoint inhibition have been largely ineffective such that pancreatic cancer is categorized as an immunologically "cold tumor". In the present study, we examine the therapeutic efficacy of a personalized cancer vaccine in which tumor cells are fused with dendritic cells (DC) resulting in the broad induction of antitumor immunity.

View Article and Find Full Text PDF

Estrogen receptor (ER) positive breast cancer represents 75% of all breast cancers in women. Although patients with ER+ cancers receive endocrine therapies, more than 30% develop resistance and succumb to the disease, highlighting the need to understand endocrine resistance. Here we show an unexpected role for the cell polarity protein SCRIB as a tumor-promoter and a regulator of endocrine resistance in ER-positive breast cancer cells.

View Article and Find Full Text PDF

Animal models are critical for the preclinical validation of cancer immunotherapies. Unfortunately, mouse breast cancer models do not faithfully reproduce the molecular subtypes and immune environment of the human disease. In particular, there are no good murine models of estrogen receptor-positive (ER+) breast cancer, the predominant subtype in patients.

View Article and Find Full Text PDF

MODY8 (maturity-onset diabetes of the young, type 8) is a dominantly inherited monogenic form of diabetes associated with mutations in the carboxyl ester lipase (CEL) gene expressed by pancreatic acinar cells. MODY8 patients develop childhood-onset exocrine pancreas dysfunction followed by diabetes during adulthood. However, it is unclear how CEL mutations cause diabetes.

View Article and Find Full Text PDF

Background: Tumor-specific cytotoxic T cells and T cell receptors are effective tools for cancer immunotherapy. Most efforts to identify them rely on known antigens or lymphocytes that have infiltrated into the tumor bed. Approaches to empirically identify tumor-targeting T cells and T cell receptors by exploiting all antigens expressed on tumor cell surfaces are not well developed for most carcinomas, including pancreatic cancer.

View Article and Find Full Text PDF

Purpose: Pancreatic ductal adenocarcinoma (PDAC) remains a significant health issue. For most patients, there are no options for targeted therapy, and existing treatments are limited by toxicity. The HOPE trial (Harnessing Organoids for PErsonalized Therapy) was a pilot feasibility trial aiming to prospectively generate patient-derived organoids (PDO) from patients with PDAC and test their drug sensitivity and correlation with clinical outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that depleting a specific enzyme, NFS1, or inhibiting cyst(e)ine availability makes tumor cells more susceptible to ferroptosis, a form of cell death, and slows down tumor growth.
  • * The research highlights that maintaining an alkaline pH inside tumor cells helps to protect them from ferroptosis, suggesting new potential treatments to combat tumor growth in challenging environments like hypoxia and acidity.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients.

View Article and Find Full Text PDF

The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effective anti-cancer therapeutics. Coenzyme Q is a critical cofactor in the electron transport chain with complex biological functions that extend beyond mitochondrial respiration.

View Article and Find Full Text PDF

Pathologists use histological features to classify tumors and assign site of origin for metastasis. How and why tumors organize the way they do and recreate their histological organization during metastasis is unknown. Here, I discuss the concept of "histostasis" conferring tumors a histological memory and hypothesize its implications for metastasis.

View Article and Find Full Text PDF

Patient-derived organoid models are proving to be a powerful platform for both basic and translational studies. Here we conduct a methodical analysis of pancreatic ductal adenocarcinoma (PDAC) tumor organoid drug response in paired patient-derived xenograft (PDX) and PDX-derived organoid (PXO) models grown under WNT-free culture conditions. We report a specific relationship between area under the curve value of organoid drug dose response and in vivo tumor growth, irrespective of the drug treatment.

View Article and Find Full Text PDF