ACS Omega
October 2023
Bioactive silicates have gained popularity as bone graft substitutes in recent years due to their exceptional ability to bind to host tissues. The current study investigates the effect of changing the metal ion-to-fuel ratio on the properties and biological activity of monticellite prepared via the sol-gel connived combustion technique. Single-phasic monticellite was obtained at 900 °C, without any secondary-phase contaminants for the fuel-lean, stoichiometric, and fuel-rich conditions.
View Article and Find Full Text PDFThe current investigation deals with the simple and ecological synthesis of CaO, MgO, CaTiO and MgTiO for the photocatalytic dilapidation of rhodamine B dye. CaO was procured from chicken eggshell waste by calcination process, while MgO was produced by solution combustion method using urea as a fuel source. Furthermore, CaTiO and MgTiO were synthesized through an easy and simple solid-state method by mixing thoroughly the synthesized CaO or MgO with TiO before calcination at 900 °C.
View Article and Find Full Text PDFThis work is aimed to develop a biocompatible, bactericidal and mechanically stable biomaterial to overcome the challenges associated with calcium phosphate bioceramics. The influence of chemical composition on synthesis temperature, bioactivity, antibacterial activity and mechanical stability of least explored calcium silicate bioceramics was studied. The current study also investigates the biomedical applications of rankinite (CaSiO) for the first time.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
The current investigation aims to replace the synthetic starting materials with biowaste to synthesize and explore three different silicate bioceramics. Pure silica from rice husk was extracted by decomposition of rice husk in muffle furnace followed by alkali treatment and acid precipitation. Raw eggshell and extracted silica were utilized for the preparation of wollastonite, diopside and forsterite by the solid-state method.
View Article and Find Full Text PDFBone is a self-engineered structural component of the human body with multifaceted mechanical strength, which provides indomitable support to the effective functioning of the human body. It is indispensable to find a suitable biomaterial for substituting the bone as the bone substitute material requirement is very high due to the rate of bone fracture and infection lead to osteoporosis in human beings increases rapidly. It is not an easy task to design a material with good apatite deposition ability, a faster rate of dissolution, superior resorbability, high mechanical strength, and significant bactericidal activity.
View Article and Find Full Text PDFIn the current work, forsterite samples with different surface area were investigated for its antibacterial activity. Dissolution studies show that the lower degradation of forsterite compared to other silicate bioceramics, which is a desirable property for repairing bone defects. Forsterite scaffold shows superior compressive strength than the cortical bone after immersion in simulated body fluid.
View Article and Find Full Text PDF