The exponential growth of social media users has changed the dynamics of retrieving the potential information from user-generated content and transformed the paradigm of information-retrieval mechanism with the novel developments on the concept of "web of data". In this regard, our proposed Ontology-Based Sentiment Analysis provides two novel approaches: First, the emotion extraction on tweets related to COVID-19 is carried out by a well-formed taxonomy that comprises possible emotional concepts with fine-grained properties and polarized values. Second, the potential entities present in the tweet can be analyzed for semantic associativity.
View Article and Find Full Text PDF