Publications by authors named "Senthil K Kandasamy"

The objective of this study is the design, simulation, and performance optimization of a micromixer device using the three input parameters of device structure, flow rate and diffusion coefficient of gold nanoparticles while the output parameters are concentration, velocity, pressure and time domain analysis. Each input parameter in the microfluidic chip influences the system output. The data were gathered through extensive study in order to optimize the diffusion control.

View Article and Find Full Text PDF

The second transmembrane (TM2) domain of GABA(A) receptor forms the inner-lining surface of chloride ion-channel and plays important roles in the function of the receptor protein. In this study, we report the first structure of TM2 in lipid bilayers determined using solid-state NMR and MD simulations. The interatomic (13)C-(15)N distances measured from REDOR magic angle spinning experiments on multilamellar vesicles, containing a TM2 peptide site specifically labeled with (13)C' and (15)N isotopes, were used to determine the secondary structure of the peptide.

View Article and Find Full Text PDF

Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on length and time scales that are 2-3 orders of magnitude larger compared to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale.

View Article and Find Full Text PDF

Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell.

View Article and Find Full Text PDF

To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl-) and cation (Na+) concentrations in the two water compartments. A transmembrane potential of approximately 350 mV was thereby generated per bilayer for a unit charge imbalance.

View Article and Find Full Text PDF

The effect of salt on the binding of the antimicrobial peptide magainin to POPC lipid bilayers is studied by 40-50 ns molecular dynamics simulations of a POPC bilayer in the presence of different concentrations of Na+ and Cl- ions, corresponding to effective concentrations of 0, 100, 150, 200, 250 and 300 millimolar NaCl, with and without a single molecule of antimicrobial peptide magainin. Simulations without magainin showed that increasing salt concentration leads to the decrease in the area per lipid, a decrease in the head group tilt of the lipids, as well as increased order of lipid tails, in agreement with other recent simulations. Simulations with magainin show that peptide binding to the lipids is stronger at lower concentrations of salt.

View Article and Find Full Text PDF

Hydrophobic mismatch, which is the difference between the hydrophobic length of trans-membrane segments of a protein and the hydrophobic width of the surrounding lipid bilayer, is known to play a role in membrane protein function. We have performed molecular dynamics simulations of trans-membrane KALP peptides (sequence: GKK(LA)nLKKA) in phospholipid bilayers to investigate hydrophobic mismatch alleviation mechanisms. By varying systematically the length of the peptide (KALP15, KALP19, KALP23, KALP27, and KALP31) and the lipid hydrophobic length (DLPC, DMPC, and DPPC), a wide range of mismatch conditions were studied.

View Article and Find Full Text PDF

We have performed molecular dynamics simulations of multiple copies of the lung-surfactant peptide SP-B1-25 in a palmitic acid (PA) monolayer. SP-B1-25 is a shorter version of lung-surfactant protein B, an important component of lung surfactant. Up to 30 ns simulations of 20 wt % SP-B1-25 in the PA monolayers were performed with different surface areas of PA, extents of PA ionization, and various initial configurations of the peptides.

View Article and Find Full Text PDF

We have performed molecular dynamics simulations of the interactions of the peptide SP-B(1-25), which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10-20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the alpha-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures.

View Article and Find Full Text PDF

We have performed molecular dynamics simulations of the interactions of two alpha-helical anti-microbial peptides, magainin2 and its synthetic analog of MSI-78, with palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayers. We used various initial positions and orientations of the peptide with respect to the lipid bilayer, including a surface-bound state parallel to the interface, a trans-membrane state, and a partially inserted state. Our 20 ns long simulations show that both magainin2 and MSI-78 are most stable in the lipid environment, with the peptide destabilized to different extents in both aqueous and lipid/water interfacial environments.

View Article and Find Full Text PDF