Publications by authors named "Sentenac A"

Article Synopsis
  • Quantitative phase microscopies (QPMs) enhance bio-imaging by providing critical data on mass distribution and transport, which is not achievable through fluorescence techniques and are label-free, avoiding issues like photobleaching.!*
  • The review compares eight QPM techniques, including digital holographic microscopy and phase-shifting interferometry, focusing on their accuracy and measurement capabilities using a custom-developed numerical toolbox for simulations.!*
  • Results indicate that DHM and PSI are robust against artefacts but can be affected by coherent noise, while other techniques show a balance between measurement precision and accuracy, with some experiencing limitations due to inherent artefacts, especially with larger samples like eukaryotic cells.!*
View Article and Find Full Text PDF

The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM).

View Article and Find Full Text PDF

Quantitative phase microscopy (QPM) represents a noninvasive alternative to fluorescence microscopy for cell observation with high contrast and for the quantitative measurement of dry mass (DM) and growth rate at the single-cell level. While DM measurements using QPM have been widely conducted on mammalian cells, bacteria have been less investigated, presumably due to the high resolution and high sensitivity required by their smaller size. This article demonstrates the use of cross-grating wavefront microscopy, a high-resolution and high-sensitivity QPM, for accurate DM measurement and monitoring of single microorganisms (bacteria and archaea).

View Article and Find Full Text PDF

Replacing Maxwell equations by a scalar wave equation is often used in computational imaging to simulate the light-sample interaction. It significantly reduces the computational burden but provides field maps that are insensitive to the polarization of the incident field, provided the latter is constant throughout the sample. Here, we develop a scalar approximation that accounts for the polarization of the incident field.

View Article and Find Full Text PDF

Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time.

View Article and Find Full Text PDF

Fourier ptychography tomography (FPT) is a novel computational technique for coherent imaging in which the sample is numerically reconstructed from images acquired under various illumination directions. FPT is able to provide three-dimensional (3D) reconstructions of the complex sample permittivity with an increased resolution compared to standard microscopy. In this work, FPT is applied to coherent anti-Stokes Raman scattering (CARS) imaging.

View Article and Find Full Text PDF

Biomedical imaging lacks label-free microscopy techniques able to reconstruct the contour of biological cells in solution, in 3D and with high resolution, as required for the fast diagnosis of numerous diseases. Inspired by computational optical coherence tomography techniques, we present a tomographic diffractive microscope in reflection geometry used as a synthetic confocal microscope, compatible with this goal and validated with the 3D reconstruction of a human effector T lymphocyte.

View Article and Find Full Text PDF

For sparse samples or in the presence of ambient light, the signal-to-noise ratio (SNR) performance of single-point-scanning coherent anti-Stokes Raman scattering (CARS) images is not optimized. As an improvement, we propose replacing the conventional CARS focus-point illumination with a periodically structured focus line while continuing to collect the transmitted CARS intensity on a single detector. The object information along the illuminated line is obtained by numerically processing the CARS signal recorded for various periods of the structured focus line.

View Article and Find Full Text PDF

Reflection phase imaging provides label-free, high-resolution characterization of biological samples, typically using interferometric-based techniques. Here, we investigate reflection phase microscopy from -only measurements under diverse illumination. We evaluate the forward and inverse scattering model based on the first Born approximation for imaging scattering objects above a glass slide.

View Article and Find Full Text PDF

Estimating three-dimensional complex permittivity of a sample from the intensity recorded at the image plane of a microscope for various angles of illumination, as in optical Fourier ptychography microscopy, permits one to avoid the interferometric measurements of classical tomographic diffraction microscopes (TDMs). In this work, we present a general inversion scheme for processing intensities that can be applied to any microscope configuration (transmission or reflection, low or high numerical aperture), scattering regime (single or multiple scattering), or sample-holder geometries (with or without substrate). The inversion procedure is tested on a wide variety of synthetic experiments, and the reconstructions are compared to that of TDMs.

View Article and Find Full Text PDF

The standard two-dimensional (2D) image recorded in bright-field fluorescence microscopy is rigorously modeled by a convolution process involving a three-dimensional (3D) sample and a 3D point spread function. We show on synthetic and experimental data that deconvolving the 2D image using the appropriate 3D point spread function reduces the contribution of the out-of-focus fluorescence, resulting in a better image contrast and resolution. This approach is particularly interesting for superresolution speckle microscopy, in which the resolution gain stems directly from the efficiency of the deconvolution of each speckle image.

View Article and Find Full Text PDF

We present a theoretical and numerical study of coherent anti-Stokes Raman scattering Fourier ptychography microscopy (CARS-FPM), a scheme that has not been considered so far in the previously reported CARS wide-field imaging schemes. In this approach, the distribution of the Raman scatterer density of the sample is reconstructed numerically from CARS images obtained under various angles of incidences of the pump or Stokes beam. Our inversion procedure is based on an accurate vectorial model linking the CARS image to the sample and yields both the real and imaginary parts of the susceptibility, the latter giving access to the Raman information, with an improved resolution.

View Article and Find Full Text PDF

In this paper, we introduce a formalism to determine the relationship between the full vectorial electric field existing at the object plane of a microscope and that existing at the image plane. The model is then used to quantitatively simulate, in both phase and intensity, the image of a radiating electric dipole placed either in a homogeneous medium or in the vicinity of a substrate. These simulations are compared with experimental measurements on single gold nanoparticles carried out by quadriwave lateral shearing interferometry.

View Article and Find Full Text PDF

We have developed a reflection tomographic microscope in which the sample is reconstructed from different holograms recorded under various angles and wavelengths of incidence. We present an iterative inversion algorithm based on a rigorous modeling of the wave-sample interaction that processes all the data simultaneously to estimate the sample permittivity distribution. We show that using several wavelengths permits a significant improvement of the reconstruction, especially along the optical axis.

View Article and Find Full Text PDF

We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.

View Article and Find Full Text PDF

In this tutorial, we present a general model linking the data provided by any optical diffraction microscope to the sample permittivity. Our analysis is applicable to essentially all microscope configurations, in transmission or reflection mode, using scanning or full-field illumination, with or without interferometric measurements. We include also a generalization of our analysis to vector fields.

View Article and Find Full Text PDF

Total internal reflection microscopy is mainly used in its fluorescence mode and is the reference technique to image fluorescent proteins in the vicinity of cell membranes. Here, we show that this technique can easily become a phase microscope by simply detecting the coherent signal resulting from the interference between the field scattered by the probed sample and the total internal reflection. Moreover, combining several illumination angles permits generating synthetic aperture reconstructions with improved resolutions compared to standard label-free microscopy techniques.

View Article and Find Full Text PDF

Fast imaging over large volumes can be obtained in a simple manner with extended-depth-of-field (EDOF) microscopy. A standard technique of Wiener deconvolution can correct for the blurring inherent in EDOF images. We compare Wiener deconvolution with an alternative, parameter-free technique based on the dual reconstruction of fluorescence and absorption layers in a sample.

View Article and Find Full Text PDF

The blind structured illumination microscopy strategy proposed by Mudry et al. is fully re-founded in this paper, unveiling the central role of the sparsity of the illumination patterns in the mechanism that drives super-resolution in the method. A numerical analysis shows that the resolving power of the method can be further enhanced with optimized one-photon or two-photon speckle illuminations.

View Article and Find Full Text PDF

We consider a fluorescence microscope in which several three-dimensional images of a sample are recorded for different speckle illuminations. We show, on synthetic data, that by summing the positive deconvolution of each speckle image, one obtains a sample reconstruction with axial and transverse resolutions that compare favorably to that of an ideal confocal microscope.

View Article and Find Full Text PDF

The rigorous modeling of large (hundreds of wavelengths) optical resonant components patterned at a subwavelength scale remains a major issue, especially when long range interactions cannot be neglected. In this Letter, we compare the performances of the discrete dipole approximation approach to that of the Fourier modal, the finite element and the finite difference time domain methods, for simulating the spectral behavior of a cavity resonator integrated grating filter (CRIGF). When the component is invariant along one axis (two-dimensional configuration), the four techniques yield similar results, despite the modeling difficulty of such a structure.

View Article and Find Full Text PDF