We report a strong Brønsted acid-catalyzed three-component oxy-aminomethylation of styrenes with -trioxane and sulfonamides or carbamates. This transformation provides a variety of 1,3-oxazinanes in moderate to good yields under mild reaction conditions. The obtained heterocycles can be readily transformed into the corresponding 1,3-amino alcohols, which are useful building blocks for the synthesis of pharmaceutically relevant molecules.
View Article and Find Full Text PDFA Cu-catalyzed regio- and enantioselective protoboration of 2,3-disubstituted 1,3-dienes is described. The protocol operates under mild conditions and is applicable to symmetrically and unsymmetrically substituted dienes, providing access to homoallylic boronates in consistently high yield, regioselectivity, and enantiomeric ratio. Preliminary investigations point to a complex mechanism.
View Article and Find Full Text PDFChem Commun (Camb)
February 2020
A difunctionalization of alkenes through sequential addition of a radical and a nucleophile has been developed, which is suggested to proceed by a radical chain mechanism not requiring a catalyst. An electron transfer step to the oxidant benzoyl peroxide is facilitated by protonation with a strong acid.
View Article and Find Full Text PDFA chemoselective 1,2-reduction of cycloalkyl vinyl ketones via asymmetric transfer hydrogenation is described. The reduction proceeded smoothly with a chiral diamine ruthenium complex as a catalyst and a HCOOH-NEt3 azeotrope as both a hydrogen source and solvent under mild conditions. A wide range of 1-cycloalkyl chiral allylic alcohols were obtained in good yields and up to 87% ee.
View Article and Find Full Text PDFA practical one-pot synthesis of chiral alcohols from readily available alkynes tandem catalysis by the combination of CFSOH and a fluorinated chiral diamine Ru(ii) complex in aqueous CFCHOH is described. Very interestingly, the combination of fluorinated catalysts and solvent exhibits a positive fluorine effect on the reactivity and enantioselectivity. A range of chiral alcohols with wide functional group tolerance was obtained in high yield and excellent stereoselectivity under simple and mild conditions.
View Article and Find Full Text PDFA novel full atom-economic process for the transformation of alkynes into chiral alcohols by TfOH-catalyzed hydration coupled with Ru-catalyzed tandem asymmetric hydrogenation in TFE under simple conditions has been developed. A range of chiral alcohols was obtained with broad functional group tolerance, good yields, and excellent stereoselectivities.
View Article and Find Full Text PDF