Publications by authors named "Sensen Pei"

By collecting the atmospheric precipitation, surface water, and groundwater in the Inner Mongolia section of the Yellow River Basin in July 2021 (wet season), October (normal season), and April 2022 (dry season), stable isotope technology was used to analyze the temporal and spatial changes in hydrogen and oxygen stable isotopes in the "three rivers" of the basin, and the MixSIAR mixing model was used to reveal the water body transformation relationship. The results showed that the mean difference in the groundwater isotope was small in the abundance period, flat period, and dry period in the Mongolia section of the Yellow River Basin. The groundwater regeneration was slow, the retention time was long, the seasonal variation was not obvious, and the D value of surface water was higher in the abundance period than in the normal period and dry period.

View Article and Find Full Text PDF

The ecology and environment of the Yellow River Basin is threatened by fluoride and nitrate contamination induced by anthropogenic activity and geogenic factors. As a result, deciphering the spatio-temporal variability of fluoride and nitrate contamination in this area remains a challenge. Three hundred eighty-six samples of surface water and groundwater from the Inner Mongolia Reaches of the Yellow River Basin were taken for this investigation.

View Article and Find Full Text PDF

The Yellow River in Inner Mongolia was selected as the study area in this study. In July (wet season) and October (dry season) of 2021, the acquisition of seasonal rivers, the Yellow River tributaries and precipitation, the Yellow River, Wuliangsuhai, Lake Hasuhai, Lake Daihai, an irrigation canal system, and underground water and sea water samples were collected to test the water chemical composition and hydrogen and oxygen isotopic values of different water types. Using the Piper triplot, Gibbs plot, ion ratio, and MixSIAR model methods, the evolution of water chemistry in the Mongolian section of the Yellow River Basin was analyzed, and the transformation relationship between precipitation, surface water, and groundwater was revealed.

View Article and Find Full Text PDF

A tightly coupled integrated navigation system (TCINS) for hypersonic vehicles is proposed when the satellite signals are disturbed. Firstly, the architecture of the integrated navigation system for the hypersonic vehicle is introduced. This system applies fiber SINS, BeiDou satellite receiver (BDS) and System On a Parogrammable Chip (SOPC) missile-born computer.

View Article and Find Full Text PDF