Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy.
View Article and Find Full Text PDFOncolytic viruses pose many questions in their use in cancer therapy. In this study, we assessed the potential of mpJX-594 (mouse-prototype JX-594), a replication-competent vaccinia virus administered by intravenous injection, to target the tumor vasculature, produce immune activation and tumor cell killing more widespread than the infection, and suppress invasion and metastasis. These actions were examined in RIP-Tag2 transgenic mice with pancreatic neuroendocrine tumors that developed spontaneously and progressed as in humans.
View Article and Find Full Text PDFPoxvirus-based active immunotherapies mediate anti-tumor efficacy by triggering broad and durable Th1 dominated T cell responses against the tumor. While monotherapy significantly delays tumor growth, it often does not lead to complete tumor regression. It was hypothesized that the induced robust infiltration of IFNγ-producing T cells into the tumor could provoke an adaptive immune evasive response by the tumor through the upregulation of PD-L1 expression.
View Article and Find Full Text PDFAbout 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability.
View Article and Find Full Text PDFAlternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination.
View Article and Find Full Text PDFPurpose: To determine whether intravenous ferumoxytol can be used to effectively label mesenchymal stem cells (MSCs) in vivo and can be used for tracking of stem cell transplants.
Materials And Methods: This study was approved by the institutional animal care and use committee. Sprague-Dawley rats (6-8 weeks old) were injected with ferumoxytol 48 hours prior to extraction of MSCs from bone marrow.
Inhibition of VEGF signaling can promote lymph node metastasis in preclinical models, but the mechanism is not fully understood, and successful methods of prevention have not been found. Signaling of hepatocyte growth factor (HGF) and its receptor c-Met can promote the growth of lymphatics and metastasis of some tumors. We sought to explore the contributions of c-Met signaling to lymph node metastasis after inhibition of VEGF signaling.
View Article and Find Full Text PDFObjectives: The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI) in pig knee specimen.
Materials And Methods: Human mesenchymal stem cells (hMSCs) were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls.
Hypoxia is linked to epithelial-mesenchymal transition (EMT) and tumor progression in numerous carcinomas. Responses to hypoxia are thought to operate via hypoxia-inducible factors (HIFs), but the importance of co-factors that regulate HIF signaling within tumors is not well understood. Here, we elucidate a signaling pathway that physically and functionally couples tyrosine phosphorylation of β-catenin to HIF1α signaling and HIF1α-mediated tumor EMT.
View Article and Find Full Text PDFSelective inhibition of vascular endothelial growth factor (VEGF) increases the efficacy of chemotherapy and has beneficial effects on multiple advanced cancers, but response is often limited and the disease eventually progresses. Changes in the tumour microenvironment--hypoxia among them--that result from vascular pruning, suppressed angiogenesis and other consequences of VEGF inhibition can promote escape and tumour progression. New therapeutic approaches that target pathways that are involved in the escape mechanisms add the benefits of blocking tumour progression to those of slowing tumour growth by inhibiting angiogenesis.
View Article and Find Full Text PDFUnlabelled: Invasion and metastasis increase after the inhibition of VEGF signaling in some preclinical tumor models. In the present study we asked whether selective VEGF inhibition is sufficient to increase invasion and metastasis and whether selective c-Met inhibition is sufficient to block this effect. Treatment of pancreatic neuroendocrine tumors in RIP-Tag2 mice with a neutralizing anti-VEGF antibody reduced tumor burden but increased tumor hypoxia, hypoxia-inducible factor-1α, and c-Met activation and also increased invasion and metastasis.
View Article and Find Full Text PDFThe purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI.
View Article and Find Full Text PDFPurpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area-density measurements of vascular endothelial growth factor (VEGF) in tumors.
Methods And Material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n=5), and MDA-MB-435 (n=8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35.
Inhibition of platelet-derived growth factor-B (PDGF-B) has multiple effects on tumors, including loss of pericytes, regression of some vessels, normalization of other vessels, and reduction of interstitial pressure. PDGF-B inhibition also increases the efficacy of cancer therapeutics, but the role on tumor vessel efficiency and drug delivery is unclear. We sought to determine whether inhibition of PDGF-B signaling can increase delivery and efficacy of cyclophosphamide in Lewis lung carcinomas or RIP-Tag2 tumors.
View Article and Find Full Text PDFAngiogenesis inhibitors that block VEGF receptor (VEGFR) signaling slow the growth of many types of tumors, but eventually the disease progresses. Multiple strategies are being explored to improve efficacy by concurrent inhibition of other functionally relevant receptor tyrosine kinases (RTK). XL880 (foretinib, GSK1363089) and XL184 (cabozantinib) are small-molecule inhibitors that potently block multiple RTKs, including VEGFR and the receptor of hepatocyte growth factor c-Met, which can drive tumor invasion and metastasis.
View Article and Find Full Text PDFObjective: To compare magnetic resonance (MR) signal characteristics of contrast agent-labeled apoptotic and viable human mesenchymal stem cells (hMSCs) in matrix-associated stem cell implants.
Methods: hMSCs were labeled with Food and Drug Administration-approved ferumoxides nanoparticles. One group (A) remained untreated whereas a second group (B) underwent mitomycin C-induced apoptosis induction.
Purpose: This study aims to determine the effect of human mesenchymal stem cell (hMSC) labeling with the fluorescent dye DiD and the iron oxide nanoparticle ferucarbotran on chondrogenesis.
Procedures: hMSCs were labeled with DiD alone or with DiD and ferucarbotran (DiD/ferucarbotran). hMSCs underwent confocal microscopy, optical imaging (OI), and magnetic resonance (MR) imaging.
The objective of this work is to establish an optical imaging technique that would enable monitoring of the integration of mesenchymal stem cells (MSC) in arthritic joints. Our approach is based on first developing a labeling technique of MSC with the fluorescent dye DiD followed by tracking the cell migration kinetics from the spatial distribution of the DiD fluorescence in optical images (OI). The experimental approach involves first the in vitro OI of MSC labeled with DiD accompanied by fluorescence microscopy measurements to establish localization of the signal within the cells.
View Article and Find Full Text PDFPurpose: To determine the effects of MRI-assayed vascular leakiness on the delivery of macromolecular therapeutics to tumors.
Materials And Methods: MDA-MB 435 tumors, subcutaneously implanted into nude rats were treated with a single dose of bevacizumab at levels of 0.1 mg (n = 5) or 1.
Contrast Media Mol Imaging
November 2009
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling.
View Article and Find Full Text PDFThe purpose of this study was to define the feasibility of dynamic contrast-enhanced magnetic resonance imaging (MRI) to estimate the vascular density and leakiness of spontaneous islet cell tumors in RIP-Tag2 transgenic mice. Dynamic T(1)-weighted spoiled gradient echo (SPGR) imaging at 2.0 T was performed in 17 RIP-Tag2 mice using a prototype blood pool macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)(35).
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and their receptors are important targets in cancer therapy based on angiogenesis inhibition. However, it is unclear whether inhibition of VEGF and PDGF together is more effective than inhibition of either one alone. Here, we used two contrasting tumor models to compare the effects of inhibiting VEGF or PDGF alone, by adenovirally generated soluble receptors, to the effects of inhibiting both together.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable or lysed labeled hMSCs, as well as nonlabeled controls, underwent MRI.
View Article and Find Full Text PDF