Publications by authors named "Senne Van Loon"

We investigate the effects of quantum fluctuations on the low-energy collective modes of two-dimensional (2D) s-wave Fermi superfluids from the BCS to the Bose limit. We compare our results to recent Bragg scattering experiments in 2D box potentials, with very good agreement. We show that quantum fluctuations in the phase and modulus of the pairing order parameter are absolutely necessary to give physically acceptable chemical potential and dispersion relation of the low-energy collective mode throughout the BCS to Bose evolution.

View Article and Find Full Text PDF

We investigate the fermionic quasiparticle branch of superfluid Fermi gases in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover and calculate the quasiparticle lifetime and energy shift due to its coupling with the collective mode. The only close-to-resonance process that low-energy quasiparticles can undergo at zero temperature is the emission of a bosonic excitation from the phononic branch. Close to the minimum of the branch we find that the quasiparticles remain undamped, allowing us to compute corrections to experimentally relevant quantities such as the energy gap, location of the minimum, effective mass, and Landau critical velocity.

View Article and Find Full Text PDF