Publications by authors named "Senlin Xiao"

Moderate stimuli in mitochondria improve wide-ranging stress adaptability in animals, but whether mitochondria play similar roles in plants is largely unknown. Here, we report the enhanced stress adaptability of S-type cytoplasmic male sterility (CMS-S) maize and its association with mild expression of sterilizing gene ORF355. A CMS-S maize line exhibited superior growth potential and higher yield than those of the near-isogenic N-type line in saline fields.

View Article and Find Full Text PDF

Background: Cytoplasmic male sterility (CMS) is a trait of economic importance in the production of hybrid seeds. In CMS-S maize, exerted anthers appear frequently in florets of field-grown female populations where only complete male-sterile plants were expected. It has been reported that these reversions are associated with the loss of sterility-conferring regions or other rearrangements in the mitochondrial genome.

View Article and Find Full Text PDF

Southern corn rust (SCR) caused by Underw. poses a major threat to maize production worldwide. The utilization of host SCR-resistance genes and the cultivation of resistant cultivars are the most effective, economical strategies for controlling SCR.

View Article and Find Full Text PDF

Anther cuticle and pollen exine are two physical barriers protecting plant reproductive cells against environmental stresses; defects in either often cause male sterility. Here, we report the characterization of a male-sterile mutant () of maize (), which displays shrunken anthers and no starch accumulation in mature pollen grains. We cloned the causal gene and confirmed its role in male fertility in maize with a set of complementary experiments.

View Article and Find Full Text PDF

Coordination between mitochondria and the nucleus is crucial for fertility determination in plants with cytoplasmic male sterility (CMS). Using yeast one-hybrid screening, we identified a transcription factor, ZmDREB1.7, that is highly expressed in sterile microspores at the large vacuole stage and activates the expression of mitochondria-encoded CMS gene orf355.

View Article and Find Full Text PDF

Unilateral cross-incompatibility (UCI) is a unidirectional inter/intra-population reproductive barrier when both parents are self-compatible. Maize Gametophyte factor1 (Ga1) is an intraspecific UCI system and has been utilized in breeding. However, the mechanism underlying maize UCI specificity has remained mysterious for decades.

View Article and Find Full Text PDF

The anther cuticle and pollen wall function as physical barriers that protect genetic material from various environmental stresses. The anther cuticle is composed of wax and cutin, the pollen wall includes exine and intine, and the components of the outer exine are collectively called sporopollenin. Other than cuticle wax, cutin and sporopollenin are biopolymers compounds.

View Article and Find Full Text PDF

Controversy exists regarding pathological factors affecting the prognosis of hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV-HCC). Their postoperative clinical behaviors and the exact HBV Deoxyribonucleic Acid (DNA) thresholds that distinguish good and poor prognoses are unknown. This study aimed to compare clinicopathological, pre- and postoperative clinical factors and overall and recurrence-free survival (RFS) between HBV-HCC patients and nonhepatitis B and nonhepatitis C HCC (NBC-HCC) patients to determine the optimal prognostic HBV DNA threshold.

View Article and Find Full Text PDF

The objective of this study was to compare the short- and long-term outcomes of radiofrequency-assisted liver resection (RFLR) and conventional clamp-crushing liver resection (CCLR) and to evaluate the safety and efficiency of RFLR. Between January 2008 and December 2012, a total of 597 patients with hepatocellular carcinoma (HCC) who underwent curative hepatectomy were identified. A total of 272 patients underwent RFLR, and 325 patients received CCLR.

View Article and Find Full Text PDF

Gibberellic acid (GA) regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway. The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins.

View Article and Find Full Text PDF

Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway.

View Article and Find Full Text PDF