Pulsed laser micropropulsion (PLMP) offers a promising avenue for miniature space craft, yet conventional propellants face challenges in balancing efficiency and stability. An optical-propulsion metastructure strategy using metal-organic frameworks (MOFs) is presented to generate graphene-metal metastructures (GMM), specifically GMM-(HKUST-1), which significantly enhances PLMP performance. This novel approach leverages the unique interaction between pulsed lasers and the precisely engineered GMMs-comprising optimized metal nanoparticle size, graphene layers, and inter-particle gaps-to boost both propulsion efficiency and stability.
View Article and Find Full Text PDFConventional propellant materials, such as polymers and single metal elements, have long been investigated for their potential in pulsed laser micropropulsion (LMP) technology. However, achieving superior LMP efficiency through physical mixing of these materials remains a significant challenge. This study presents a paradigm shift by introducing porous crystalline polymers, known as metal-organic frameworks (MOFs), as novel propellants in pulsed LMP.
View Article and Find Full Text PDFTransition metal chalcogenides have attracted much attention as high-performance electrocatalysts for hydrogen evolution reaction (HER). Here, we synthesized an efficient HER electrocatalyst of amorphous ruthenium sulfide (A-RuS), exhibiting an overpotential of 141 mV at the current density of 10 mA cm and a Tafel slope of 65.6 mV dec.
View Article and Find Full Text PDF