Evidence shows that short-chain fatty acids (SCFAs) play an important role in health maintenance and disease development. In particular, butyrate is known to induce apoptosis and autophagy. However, it remains largely unclear whether butyrate can regulate cell ferroptosis, and the mechanism by which has not been studied.
View Article and Find Full Text PDFBackground: The glucose requirement of dairy cows is mainly met by increasing the rate of hepatic gluconeogenesis. However, due to negative energy balance, the liver of periparturient cows is under oxidative stress induced by lipid over-mobilization, and hepatic gluconeogenesis is reduced. Studies have demonstrated that resveratrol, which is widely known for its antioxidant properties, can alter hepatic gluconeogenesis.
View Article and Find Full Text PDFThe amino acid-stimulated Rag GTPase pathway is one of the main pathways that regulate mechanistic target of rapamycin complex 1 (mTORC1) activation and function, but little is known about the effects of growth factors on Rag GTPase-mediated mTORC1 activation. Here, a highly conserved insulin-responsive phosphorylation site on folliculin (FLCN), Ser62, that is phosphorylates by AKT1 is identified and characterized. mTORC2-AKT1 is localized on lysosomes, and RagD-specific recruitment of mTORC2-AKT1 on lysosomes is identified as an essential step in insulin-AKT1-mediated FLCN phosphorylation.
View Article and Find Full Text PDFPharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS.
View Article and Find Full Text PDFScope: The mechanistic target of rapamycin complex 1 (mTORC1), as a link between nutrients and autophagy, senses many nutrients in the microenvironment. A growing body of recent literature describes the function of bile acids (BAs) as versatile signaling molecules, while it remains largely unclear whether mTORC1 can sense BAs and the mechanism has not been studied.
Methods And Results: After treating LO2 cells with indicated concentration of chenodeoxycholic acid (CDCA) and farnesoid X receptor (FXR) inhibitor/activator for 6 h, it finds that CDCA and FXR significantly accelerate mTORC1 activation.
species are well-known ornamental plants that are used in traditional Chinese medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer properties.
View Article and Find Full Text PDFCattle can efficiently perform de novo generation of glucose through hepatic gluconeogenesis to meet post-weaning glucose demand. Substantial evidence points to cattle and non-ruminant animals being characterized by phylogenetic features in terms of their differing capacity for hepatic gluconeogenesis, a process that is highly efficient in cattle yet the underlying mechanism remains unclear. Here we used a variety of transcriptome data, as well as tissue and cell-based methods to uncover the mechanisms of high-efficiency hepatic gluconeogenesis in cattle.
View Article and Find Full Text PDFScope: Mechanistic target of rapamycin (mTOR) serves as a central signaling node in the coordination of cell growth and metabolism, and it functions via two distinct complexes, namely, mTOR complex 1 (mTORC1) and mTORC2. mTORC1 plays a crucial role in sensing amino acids, whereas mTORC2 involves in sensing growth factors. However, it remains largely unclear whether mTORC2 can sense amino acids and the mechanism by which amino acids regulate mTORC2 has not been studied.
View Article and Find Full Text PDFMechanistic target of rapamycin complex 1 (mTORC1) is a multi-protein complex widely found in eukaryotes. It serves as a central signaling node to coordinate cell growth and metabolism by sensing diverse extracellular and intracellular inputs, including amino acid-, growth factor-, glucose-, and nucleotide-related signals. It is well documented that mTORC1 is recruited to the lysosomal surface, where it is activated and, accordingly, modulates downstream effectors involved in regulating protein, lipid, and glucose metabolism.
View Article and Find Full Text PDFT-2 toxin is a trichothecene mycotoxin commonly found in animal feed and agricultural products. Evidence indicates that T-2 toxin induces apoptosis and autophagy. This study investigated the role of ferroptosis in T-2 toxin cytotoxicity.
View Article and Find Full Text PDF