Publications by authors named "Senjuti Sen"

Background: Suppression and activation of plant defense genes is comprehensively regulated by WRKY family transcription factors. Chickpea, the non-model crop legume suffers from wilt caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

Physical interaction and phosphorylation by CaMPK9 protects the degradation of CaWRKY40 that induces resistance response in chickpea to Fusarium wilt disease by modulating the transcription of defense responsive genes. WRKY transcription factors (TFs) are the global regulators of plant defense signaling that modulate immune responses in host plants by regulating transcription of downstream target genes upon challenged by pathogens. However, very little is known about immune responsive role of Cicer arietinum L.

View Article and Find Full Text PDF

Promoters of many defense related genes are enriched with W-box elements serving as binding sites for plant specific WRKY transcription factors. In this study, expression of WRKY40 transcription factor was analyzed in two contrasting susceptible (JG62) and resistant (WR315) genotypes of chickpea infected with Foc1. The resistant plants showed up-regulation of WRKY40 under Fusarium stress, whereas in susceptible plants WRKY40 expression was absent.

View Article and Find Full Text PDF

Drought and salinity are the two major environmental constraints that severely affect global agricultural productivity. Plant-specific HD-Zip transcription factors are involved in plant growth, development and stress responses. In the present study, we explored the functional characteristics and regulation of a novel HD-Zip (I) gene from chickpea, CaHDZ12, in response to water-deficit and salt-stress conditions.

View Article and Find Full Text PDF

Background: Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R.

View Article and Find Full Text PDF