Publications by authors named "Senghuat Ong"

Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the "average" spatial pattern of disease risk, thereby masking time trajectories of disease risk. In this study we propose a new idea titled "spatio-temporal kernel density estimation (stKDE)" that employs hybrid kernel (i.

View Article and Find Full Text PDF

In this paper, a new set of orthogonal moments based on the discrete classical Krawtchouk polynomials is introduced. The Krawtchouk polynomials are scaled to ensure numerical stability, thus creating a set of weighted Krawtchouk polynomials. The set of proposed Krawtchouk moments is then derived from the weighted Krawtchouk polynomials.

View Article and Find Full Text PDF

A model has been developed for predicting the density of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. The model takes into account different environmental factors, including elevation, air and soil temperature, type of vegetation, mean height of preponderant vegetation and soil humidity. Deviance and Akaike information criteria were used to determine the best model fits.

View Article and Find Full Text PDF

This paper shows how Hahn moments provide a unified understanding of the recently introduced Chebyshev and Krawtchouk moments. The two latter moments can be obtained as particular cases of Hahn moments with the appropriate parameter settings, and this fact implies that Hahn moments encompass all their properties. The aim of this paper is twofold: 1) To show how Hahn moments, as a generalization of Chebyshev and Krawtchouk moments, can be used for global and local feature extraction, and 2) to show how Hahn moments can be incorporated into the framework of normalized convolution to analyze local structures of irregularly sampled signals.

View Article and Find Full Text PDF