Publications by authors named "Senften M"

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development.

View Article and Find Full Text PDF

Germ cells, the cells that give rise to sperm and egg, maintain the potential to recreate all cell types in a new individual. This wide developmental potential, or totipotency, is manifested in unusual tumors called teratomas, in which germ cells undergo somatic differentiation. Although recent studies have implicated RNA regulation, the mechanism that normally prevents the loss of germ cell identity remains unexplained.

View Article and Find Full Text PDF

Hair cells of the mammalian inner ear are the mechanoreceptors that convert sound-induced vibrations into electrical signals. The molecular mechanisms that regulate the development and function of the mechanically sensitive organelle of hair cells, the hair bundle, are poorly defined. We link here two gene products that have been associated with deafness and hair bundle defects, protocadherin 15 (PCDH15) and myosin VIIa (MYO7A), into a common pathway.

View Article and Find Full Text PDF

We have previously shown that mice with a CNS restricted knock-out of the integrin beta1 subunit gene (Itgb1-CNSko mice) have defects in the formation of lamina and folia in the cerebral and cerebellar cortices that are caused by disruption of the cortical marginal zones. Cortical structures in postnatal and adult Itgb1-CNSko animals are also reduced in size, but the mechanism that causes the size defect has remained unclear. We now demonstrate that proliferation of granule cell precursors (GCPs) is severely affected in the developing cerebellum of Itgb1-CNSko mice.

View Article and Find Full Text PDF

Mice that lack all beta1-class integrins in neurons and glia die prematurely after birth with severe brain malformations. Cortical hemispheres and cerebellar folia fuse, and cortical laminae are perturbed. These defects result from disorganization of the cortical marginal zone, where beta1-class integrins regulate glial endfeet anchorage, meningeal basement membrane remodeling, and formation of the Cajal-Retzius cell layer.

View Article and Find Full Text PDF

The F-box protein p45SKP2 is the substrate-targeting subunit of the ubiquitin-protein ligase SCFSKP2 and is frequently overexpressed in transformed cells. Here we report that expression of p45SKP2 in untransformed fibroblasts activates DNA synthesis in cells that would otherwise growth-arrest. Expression of p45SKP2 in quiescent fibroblasts promotes p27Kip1 degradation, allows the generation of cyclin-A-dependent kinase activity and induces S phase.

View Article and Find Full Text PDF

The oncogenic protein of polyomavirus, middle-T antigen, associated with cell membranes and interacts with a variety of cellular proteins involved in mitogenic signalling. Middle-T antigen may therefore mimic the function of cellular tyrosine kinase growth factor receptors, like the platelet-derived growth factor or epidermal growth factor receptor. Growth factor receptor signalling is initiated upon the binding of a ligand to the extracellular domain of the receptor.

View Article and Find Full Text PDF

The oncogenic proteins encoded by papovaviruses, the tumor antigens, have been extensively used as model systems to study mitogenic signaling and cell transformation. These proteins stimulate cell growth in cultured cells and induce tumors in virus infected or transgenic animals. One of these proteins, polyomavirus middle-T, acts like a constitutively activated tyrosine growth factor receptor.

View Article and Find Full Text PDF

Middle-T antigen of mouse polyomavirus, an oncogenic DNA virus, associates with and activates the cellular tyrosine kinases c-Src, c-Yes, and Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. To determine the domain of c-Src directing association with middle-T, mutant c-Src proteins lacking the amino-terminal unique domain and the myristylation signal, the SH2 domain, the SH3 domain, or all three of these domains were coexpressed with middle-T in NIH 3T3 cells.

View Article and Find Full Text PDF

Middle-T antigen is the oncogenic protein of Polyomavirus and associates with several cellular enzymes involved in signal transduction, e.g., Src tyrosine kinases, phosphatidylinositol 3-kinase (PI 3-kinase), protein phosphatase 2A (PP2A), and Shc, an SH2 domain-containing adapter protein.

View Article and Find Full Text PDF

Tyrosine kinase are important mediators of signal transduction in eukaryotic cells. In order to better understand the mechanism of catalysis we studied a set of mutants of the prototype tyrosine kinase, the c-Src protein, a homologue of the Rous Sarcoma virus oncogene. Based on an X-ray structure of cAMP-dependent protein kinase (cAPK) we mutated an arginine residue conserved in subdomain VI of all known kinases to a non-charged residue.

View Article and Find Full Text PDF

Transformation of cells in culture by polyomavirus is mediated by one of its early gene products, middle-sized tumor antigen (MTAg). This protein forms multiple complexes with cellular enzymes such as tyrosine kinases (pp60c-src), a phosphatidylinositol 3-kinase, and phosphatase 2A. Association with MTAg leads to the activation of pp60c-src through interference with phosphorylation at Tyr-527, a site negatively regulating src kinase activity.

View Article and Find Full Text PDF