To investigate a cross-sectional association between blood metal mixture and myocardial enzyme profile, we quantified creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LD), α-hydroxybutyrate dehydrogenase (α-HBD), and aspartate transaminase (AST) levels among participants from the manganese-exposed workers healthy cohort (MEWHC) (n = 544). The levels of 22 metals in blood cells were determined using inductively coupled plasma mass spectrometry. The least absolute shrinkage and selection operator (LASSO) penalized regression model was utilized for screening metals.
View Article and Find Full Text PDFObjective: To clarify the prognosis effect between body surface area (BSA) and patients with acute kidney injury (AKI), we attempted to analyze the association between BSA and 90-day all-cause mortality in critically ill patients with AKI.
Methods: Clinical data of 9195 critically ill patients with AKI were retrieved from the Medical Information Mart for Intensive Care III database were then retrospectively analyzed. BSA were calculated using the Mosteller formula.
Exposure to metal mixtures compromises the immune system, with the complement system connecting innate and adaptive immunity. Herein, we sought to explore the relationships between blood cell metal mixtures and the third and fourth components of serum complement (C3, C4). A total of 538 participants were recruited in November 2017, and 289 participants were followed up in November 2021.
View Article and Find Full Text PDFFew studies are available on associations between metal mixture exposures and disrupted thyroid hormone homeostasis; particularly, the role of iodine status was ignored. Here, we aimed to explore the cross-sectional relationship of blood cell metals with thyroid homeostasis and explore the potential modifying effect of iodine status. Among 328 workers from the manganese-exposed workers healthy cohort (MEWHC), we detected thyroid function parameters: thyroid stimulating hormone (TSH), total triiodothyronine (TT3), free triiodothyronine (FT3), total tetraiodothyronine (TT4), free tetraiodothyronine (FT4) as well as calculated sum activity of peripheral deiodinases (G) and thyroid's secretory capacity (G).
View Article and Find Full Text PDF