Publications by authors named "Senatorov V"

A growing body of evidence shows that epileptic activity is frequent but often undiagnosed in patients with Alzheimer's disease (AD) and has major therapeutic implications. Here, we analyzed electroencephalogram (EEG) data from patients with AD and found an EEG signature of transient slowing of the cortical network that we termed paroxysmal slow wave events (PSWEs). The occurrence per minute of the PSWEs was correlated with level of cognitive impairment.

View Article and Find Full Text PDF

Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span.

View Article and Find Full Text PDF

Objective: Dogs with spontaneous or acquired epilepsy exhibit resemblance in etiology and disease course to humans, potentially offering a translational model of the human disease. Blood-brain barrier dysfunction (BBBD) has been shown to partake in epileptogenesis in experimental models of epilepsy. To test the hypothesis that BBBD can be detected in dogs with naturally occurring seizures, we developed a linear dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis algorithm that was validated in clinical cases of seizing dogs and experimental epileptic rats.

View Article and Find Full Text PDF

The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration.

View Article and Find Full Text PDF

Brain damage due to stroke or traumatic brain injury (TBI), both leading causes of serious long-term disability, often leads to the development of epilepsy. Patients who develop post-injury epilepsy tend to have poor functional outcomes. Emerging evidence highlights a potential role for blood-brain barrier (BBB) dysfunction in the development of post-injury epilepsy.

View Article and Find Full Text PDF

A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation.

View Article and Find Full Text PDF

The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes.

View Article and Find Full Text PDF

Major depressive disorder is often linked to stress. Although short-term stress is without effect in mice, prolonged stress leads to depressive-like behavior, indicating that an allostatic mechanism exists in this difference. Here we demonstrate that mice after short-term (1 h per day for 7 days) chronic restraint stress (CRS), do not display depressive-like behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying special brain cells called glial cells and looking for ways to tell them apart, grow them, and change them for research.
  • They have found specific markers to identify different types of these cells, which helps in experimenting with them in the lab and in living animals.
  • The research also explores how these cells can help treat brain diseases by using stem cells, and it highlights new methods and tools for studying these cells more effectively.
View Article and Find Full Text PDF

Introduction: Isolated aphonia induced by acute stroke is a rare phenomenon with only a few cases reported in the literature.

Case Presentation: We report an unusual case of a 44-year-old African-American man with a history of hypertension, smoking and cocaine use who developed acute aphonia secondary to simultaneous ischemic infarctions of the bilateral putamen nuclei.

Conclusion: We describe the clinical presentation of acute aphonia induced by bilateral putamen nuclei ischemic infarctions, correlating clinical symptoms with injury localization.

View Article and Find Full Text PDF

The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wingless and integration site (Wnt)/β-catenin pathway.

View Article and Find Full Text PDF

Purpose: Olfactomedin 2 (OLFM2) belongs to the family of olfactomedin domain-containing proteins. Genetic data suggest its association with glaucoma in Japanese patients. However, its functions are still elusive.

View Article and Find Full Text PDF

This review outlines the neuroprotective activities and structural specificities of two distinct proteins, activity-dependent neuroprotective protein, a protein assigned transcription factor/chromatin remodeling activity, and carboxypeptidase E, a classic exopeptidase. Future studies will elucidate how these two versatile proteins converge onto a similar endpoint: neuroprotection.

View Article and Find Full Text PDF

Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation.

View Article and Find Full Text PDF

Molecules that govern the formation, integrity, and function of the hippocampus remain an important area of investigation. Here we show that absence of the proneuropeptide processing enzyme, carboxypeptidase E (CPE) in CPE knock-out (KO) mice had a profound effect on memory, synaptic physiology, and the cytoarchitecture of the hippocampus in these animals. Adult CPE-KO mice displayed deficits in memory consolidation as revealed by the water-maze, object preference, and social transmission of food preference tests.

View Article and Find Full Text PDF

We developed a genetic mouse model of open-angle glaucoma by expression of mutated mouse myocilin (Myoc) in transgenic (Tg) mice. The Tyr423His point mutation, corresponding to the severe glaucoma-causing Tyr437His mutation in the human MYOC gene, was introduced into bacterial artificial chromosome DNA encoding the full-length mouse Myoc gene and long flanking regions. Both wild-type (Wt) and Tg animals expressed Myoc in tissues of the irido-corneal angle and the sclera.

View Article and Find Full Text PDF

Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential.

View Article and Find Full Text PDF

Purpose: To characterize properties of Pdlim2, a novel PDZ and LIM domain-containing protein.

Methods: cDNA encoding Pdlim2 was identified in a cDNA library of transcripts expressed in the tissues of the rat eye irido-corneal angle. The expression pattern of the Pdlim2 gene was studied by Northern blot analysis and in situ hybridization.

View Article and Find Full Text PDF

Purpose: To characterize gene expression pattern in the combined tissues of the rat iridocorneal angle by expressed sequence tag (EST) analysis, as part of the NEIBank project.

Methods: RNA was extracted from dissected tissues of the rat iridocorneal angle (iris, ciliary body, trabecular meshwork, and Schlemm's canal) and used to construct unamplified, non-normalized cDNA libraries in the pSPORT1 vector. Approximately 5000 clones were sequenced from the 5'-end.

View Article and Find Full Text PDF

We assessed the ability of lithium to reduce neurodegeneration and to stimulate cell proliferation in a rat model of Huntington's disease in which quinolinic acid (QA) was unilaterally infused into the striatum. LiCl (0.5-3.

View Article and Find Full Text PDF

Mammalian thalamus is a critical site where early perception of sensorimotor signals is dynamically regulated by acetylcholine in a behavioral state-dependent manner. In this study, we examined how synaptic transmission is modulated by acetylcholine in auditory thalamus where sensory relay neurons form parallel lemniscal and nonlemniscal pathways. The former mediates tonotopic relay of acoustic signals, whereas the latter is involved in detecting and transmitting auditory cues of behavioral relevance.

View Article and Find Full Text PDF

Lithium has long been a primary drug used to treat bipolar mood disorder, even though the drug's therapeutic mechanisms remain obscure. Recent studies demonstrate that lithium has neuroprotective effects against glutamate-induced excitotoxicity in cultured neurons and in vivo. The present study was undertaken to examine whether postinsult treatment with lithium reduces brain damage induced by cerebral ischemia.

View Article and Find Full Text PDF

We studied the neuroprotective effects of valproic acid (VPA), a primary mood stabilizer and anticonvulsant, in cultured rat cerebral cortical neurons (CCNs). CCNs underwent spontaneous cell death when their age increased in culture. As shown by mitochondrial activity and calcein-AM assays, treatment of CCNs with VPA starting from day 9 in vitro markedly increased viability and prolonged the life span of the cultures.

View Article and Find Full Text PDF

Lithium has long been one of the primary drugs used to treat bipolar mood disorder. However, neither the etiology of this disease nor the therapeutic mechanism(s) of this drug is well understood. Several lines of clinical evidence suggest that lithium has neurotrophic actions.

View Article and Find Full Text PDF

Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats.

View Article and Find Full Text PDF